Shengwei Shia,
Jing Lia,
Tongle Bua,
Shili Yanga,
Junyan Xiaob,
Yong Penga,
Wei Lia,
Jie Zhonga,
Zhiliang Kua,
Yi-Bing Chengacd and
Fuzhi Huang*a
aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China. E-mail: fuzhi.huang@whut.edu.cn
bSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
cDepartment of Materials Science and Engineering, Monash University, VIC 3800, Australia
dARC Centre of Excellence in Exciton Science, Monash University, VIC 3800, Australia
First published on 29th March 2019
Tin oxide (SnO2) is widely used as electron transport layer (ETL) material in perovskite solar cells (PSCs). Numerous synthesis methods for SnO2 have been reported, but they all require a proper thermal treatment for the SnO2 ETLs. Herein we present a simple method to synthesize SnO2 nanoparticles (NPs) at room temperature. By using butyl acetate as a precipitator and a proper UV–Ozone treatment to remove Cl residuals, excellent SnO2 ETLs were obtained without any thermal annealing. The highest power conversion efficiency (PCE) of the prepared PSCs was 19.22% for reverse scan (RS) and 18.79% for forward scan (FS). Furthermore, flexible PSCs were fabricated with high PCEs of 15.27%/14.74% (RS/FS). The low energy consuming SnO2 ETLs therefore show great promise for the flexible PSCs' commercialization.
SnO2 NPs have been synthesized via a low temperature process by ultrasonic-assisting37 or introducing thiourea as an additive in precursor.38 However, they still cannot avoid a proper annealing treatment for the prepared SnO2 film to remove the additive and induce good connections between nanoparticles. Herein we develop a simple sol–gel method to prepare uniform SnO2 NPs at room temperature. Furthermore, the prepared SnO2 ETLs work well without any thermal annealing. The PSCs made with annealing-free SnO2 ETLs achieved a high PCE of 19.22% by using a mixed cation perovskite absorber39 (KCsFAMAPbIxBr3−x, where FA: formamidine, MA: methylamine). In addition, the corresponding flexible PCSs obtained a PCE of 15.27%. The SnO2 NPs via such a simple thermal-free process allow them to be a promising ETL material in the potential commercial application.
To collect SnO2 NPs, isopropanol (IPA) was used as a precipitator. After washing, the SnO2 NPs were finally dispersed in ethanol. Transmission electron microscopy (TEM) was employed to examine the structure of the SnO2 NPs. Fig. 1b shows the typical TEM image of the Sn-100 derived SnO2 NPs with grain sizes below 5 nm. The polycrystalline feature of the Sn-100 was revealed by the electron diffraction rings (Fig. 1b inset). In addition, the corresponding X-ray diffraction (XRD) spectrum of Sn-100 (Fig. 1c) further confirms the presence of the SnO2 nanocrystals. The XRD spectra of Sn-0, Sn-50, Sn-100 and Sn-150 NPs are shown in Fig. S2b,† indicating that the crystallinity increases with the hydrolysis time.
To fabricate ETLs, the Sn-0, Sn-50, Sn-100, Sn-150 NPs were spun coating onto FTO glass respectively. All the ETLs dried at room temperature without annealing. Then the perovskite film and spiro-OMeTAD film were sequentially deposited by spin coating. Finally, gold was deposited onto the spiro-OMeTAD layer as a back electrode. The cross-sectional SEM image of the device structure is shown in Fig. 1d. Fig. 1e shows the J–V curves of the PSCs, the corresponding photovoltaic characteristics are listed in Table 1, and the distribution of the characteristics is shown in Fig. S2c.† The Sn-100 has an excellent performance with an average PCE 17.87% for reverse scan (RS), while the Sn-0 has a very poor average PCE of 0.32% (RS). It is found that the longer hydrolysis time promotes the higher short-circuit current density (Jsc) output. However, if the hydrolysis time goes over 150 min, the Jsc starts to decrease. To find out the cause, the transmittance of SnO2 ETLs were firstly tested by Ultraviolet-visible spectroscopy (UV-Vis) (Fig. 2a). Although the Sn-100 ETL shows a little higher transmittance than Sn-0, the big difference in Jsc should not be ascribed to it. The electrical conductivity of the ETLs (Fig. 2b) was then measured. The conductivity of the Sn-0 film is extremely poor, which is possibly due to too much SnCl4 residual in the film. The poor conductivity resulted in the low current and fill factor. The Sn-100 ETL has the highest transmittance and conductivity among these ETLs. Therefore, the Sn-100 device has the highest PCE. To find out how the charge extraction property at the SnO2 ETLs/perovskite interface, the steady photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements were performed. The PL spectra (Fig. 2c) indicate longer hydrolysis time induced a better charge extraction ability of the prepared SnO2 ETLs, which is further confirmed by the TRPL spectra (Fig. 2d). It should be pointed out that Sn-100 and Sn-150 show quite similar PL properties. Further study of SnO2 ETLs about Cl element remnants was carried out by X-ray photoelectron spectroscopy (XPS) as shown in Fig. 2e. The spectra clearly indicate the presence of SnO2. Furthermore, it could be found that with the longer reaction time, less Cl residues in the ETLs as Sn-100 and Sn-150 films have a much lower Cl 2p peak (2p spin-orbital split p3/2 and p1/2 (ref. 40)) intensity. The residual Cl− on the surface leads to partial decomposition of perovskite.26 The XRD of the perovskites validates the PbI2 existence (Fig. S2d†). Compared to the perovskite films prepared on FTO directly and SnO2 ETLs, the major distinction is the residue of PbI2, weaker peak intensity of PbI2 for perovskite film on FTO. The scan electron microscope (SEM) images show the SnO2 films and perovskite films (Fig. S3a–h†) morphologies and microstructures. The SnO2 film prepared by the Sn-0 NPs have pinholes, the Sn-50 film has reduced and smaller pinholes, and both Sn-100 and Sn-150 films show perfect morphologies without pinholes. All the films comprise compact large perovskite grains, in spite of the existence of the light coloured PbI2 grains.
25 °C | J–V sweep direction | Voc (V) | Jsc (mA cm−2) | FF | PCE (%) | Rs (Ω cm2) | Rsh (kΩ cm2) |
---|---|---|---|---|---|---|---|
0 min (Sn-0) | RS | 1.057 | 1.09 | 0.28 | 0.32 | 744.6 | 0.4 |
FS | 1.072 | 0.76 | 0.23 | 0.19 | 506.0 | 0.4 | |
50 min (Sn-50) | RS | 1.070 | 20.51 | 0.54 | 11.85 | 16.3 | 1.0 |
FS | 1.066 | 20.37 | 0.50 | 10.85 | 15.8 | 10.8 | |
100 min (Sn-100) | RS | 1.119 | 21.58 | 0.74 | 17.87 | 5.6 | 0.7 |
FS | 1.118 | 21.73 | 0.64 | 15.53 | 7.8 | 17.0 | |
150 min (Sn-150) | RS | 1.081 | 20.98 | 0.72 | 16.33 | 6.9 | 9.3 |
FS | 1.071 | 20.92 | 0.62 | 13.89 | 10.3 | 1.8 |
The J–V characteristics show there is still hysteresis of PSCs. It has been reported that the UV–Ozone (UVO) treatment for SnO2 film can effectively reduce the hysteresis.41 The Sn-100 NPs films were then treated with the UVO by different times, from 5 min, 10 min and 15 min, respectively. Table S1† and Fig. 3a show the parameters as well as the J–V curves of the treated PSCs. Apparently, all the treated devices have depressed hysteresis to less than 1% and the Jsc rises universally. XPS spectra of Cl 2p spin–orbit (Fig. 3b) show that the peaks related to Cl 2p p3/2 and p1/2 disappear after the UVO treatment, indicating the removal of the Cl residues in the film. The Cl residues could be attributed to the residuary SnCl4 from the precursor. The presence of SnCl4 would decrease the conductivity of the prepared ETLs. By removing the SnCl4 residuals via the UVO, the conductivity of films could increase as showed in Fig. S4.† This in turn results in the increased conductivity. Furthermore, after the UVO treatment, the Sn 3d5/2 and Sn 3d3/2 binding energies move toward to 487.2 and 495.6 eV respectively (Fig. 3c), which are very closed to reported values of the SnO2.22 This means much purer SnO2 forms. Due to the less Cl remnants in the SnO2 ETLs, the less PbI2 forms in the perovskite films as shown in the XRD spectra (Fig. 3d), producing highly crystalline perovskite. SEM images (Fig. S5a–h†) show the morphologies of the UVO treated SnO2 and perovskite films. Both SnO2 and large grain perovskite films are quite compact. With the longer time treatment, less PbI2 grains are found in the perovskite films.
Although the Sn-100 devices have achieved a promising performance, the PCEs (17.97/17.26%, RS/FS) are not high enough compared to the reported thermal processed devices. Considering IPA can mix with water, little trace of water may remain in SnO2 NPs precursor solution. The trace of water will stay in the ETL and damage the interface of ETL/perovskite. So, a new precipitator which is immiscible with water and can be anti-solvent for perovskite is required to replace the IPA in order to improve the performance further. Previously, ethyl acetate has been employed as an effective anti-solvent for the perovskite.42 After investigation of methyl acetate (MA), ethyl acetate, propyl acetate and butyl acetate (BA), BA stands out due to its lower polarity, more hydrophobic, and less dosage as precipitator. Ethyl alcohol was used as intermediate solvent to allow ester to mix with water so that SnO2 NPs can precipitate. We used Sn-IPA and Sn-BA to distinguish IPA and BA as the precipitant to collect SnO2 NPs which were prepared from 100 min hydrolysis. All the films were treated with the UVO for 15 min. The Fig. S6a and b† show the PL and TRPL spectra of the perovskite/Sn-IPA and perovskite/Sn-BA. It could be found that the Sn-BA ETL could extract the electrons more efficiently than the Sn-IPA ETL. The J–V curves along with the photovoltaic characteristics of the champion PSCs based on the Sn-IPA and Sn-BA ETLs are showed in Fig. 4a. The champion PCEs of the Sn-BA based PSC are 19.22/18.79% (RS/FS), while the Sn-IPA based devices have the PCEs of 17.97/17.26% (RS/FS). The EQE spectra (Fig. 4b) indicate the Sn-BA based device has higher values across all the wavelengths, resulting in an integrated photocurrent of 22.30 mA cm−2 compared to 21.09 mA cm−2 of the Sn-IPA based device. The power steady state current output of Sn-BA is 20.23 mA cm−2 with PCE ∼ 18.53%, whereas Sn-IPA is 19.85 mA cm−2 at first but gradually declined to 18.26 mA cm−2 after 150 seconds as shown in Fig. 4c. To further test the stability, all devices were stored in ambient air without encapsulation. The PCE of the champion Sn-BA based device grew up 6.7% (from 18.02% to 19.22%) in first 80 h then attenuated slowly. The reason of the increase of the efficiency at the initial stage is still uncertain, possible due to the relaxation of the ions moving in the perovskites. Over 1500 hours, its PCE still remained about 91.8% compared to the original value. Extra devices were taken to conduct the test, showing the similar trends (Fig. S7†). For the Sn-IPA based device, it kept decaying gradually and remained 75.5% PCE after 1500 hours (Fig. 4d).
Fig. 4 Performance of the Sn-BA and Sn-IPA champion PSCs. (a) J–V curves, (b) EQE spectra, (c) steady-state power output with the bias voltage of 0.93 V, and (d) stability test. |
The above results have shown that an excellent process of room temperature synthesis SnO2 ETLs without annealing was developed. Then flexible PSCs were fabricated on the Sn-BA ETL/PET-ITO as showed in Fig. 5a–d. The highest PCE of the flexible PSCs is 15.27/14.74% (RS/FS) with the Jsc of 20.05 mA cm−2, close to the integrated photocurrent (18.95 mA cm−2) form the EQE spectrum (Fig. 5a and b). After bending 600 times, the PCE remained 59.26% compared to the original PCE due to the doubled Rs after so many times bending (Fig. 5c).
Footnote |
† Electronic supplementary information (ESI) available: Experimental section. See DOI: 10.1039/c8ra10603g |
This journal is © The Royal Society of Chemistry 2019 |