Sayed K. Ramadana,
Eman Z. Elrazaz
b,
Khaled A. M. Abouzid
*bc and
Abeer M. El-Naggar
*a
aDepartment of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt. E-mail: elsayedam@sci.asu.edu.eg
bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566 Cairo, Egypt. E-mail: khaled.abouzid@pharma.asu.edu.eg
cDepartment of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
First published on 10th August 2020
Herein, we report an eco-friendly synthesis of a new series of quinazolinone-based derivatives as potential PARP-1 inhibitors. The 4-quinazolinone scaffold was utilized as a bioisostere to the phthalazinone core of the reference compound Olaparib. Most of the synthesized compounds displayed appreciable inhibitory activity against PARP-1. Compound 12c showed inhibitory activity at IC50 = 30.38 nM comparable to Olaparib, which has IC50 = 27.89 nM. Cell cycle analysis was performed for compounds 12a and 12c, and both exhibited cell growth arrest at G2/M phase in the MCF-7 cell line. In addition, both compounds increased the programmed apoptosis compared to the control. Furthermore, molecular docking of the final compounds into the PARP-1 active site was executed to explore their probable binding modes. Also, a computational QSAR and in silico ADMET study was performed. The results of this study revealed that some of the newly synthesized compounds could serve as a new framework to discover new PARP-1 inhibitors with anti-cancer activity.
As a response to DNA damage, PARP-1 catalyzes the cleavage of nicotinamide adenine dinucleotide NAD+ into nicotinamide and ADP ribose units, which are transferred to different acceptor proteins participating in DNA damage repair processes, including itself, histones and formed ADP-ribose polymers (PAR). So, PARP-1 has two binding sites; one is occupied by the nicotinamide-ribose (NI site) and the other is the adenine-ribose binding site (AD site).12
Comp. no. | M. W | Conv. | Comp. no. | M. W | Conv. | ||||
---|---|---|---|---|---|---|---|---|---|
TM (min) | YM (%) | Tc (min) | Yc (%) | TM (min) | YM (%) | Tc (min) | Yc (%) | ||
5a | 3 | 85.57 | 360 | 67.44 | 8c | 6 | 88.45 | 540 | 69.57 |
5b | 4 | 93.53 | 480 | 59.71 | 9a | 4 | 91.43 | 480 | 54.44 |
5c | 3 | 86.51 | 420 | 69.55 | 9b | 4 | 92.34 | 420 | 65.59 |
6a | 3 | 85.47 | 360 | 57.73 | 9c | 4 | 91.39 | 480 | 68.49 |
6b | 6 | 93.50 | 480 | 59.81 | 12a | 4 | 89.60 | 360 | 63.47 |
6c | 3 | 86.58 | 420 | 69.66 | 12b | 6 | 88.47 | 540 | 54.55 |
7a | 3 | 85.51 | 360 | 57.65 | 12c | 4 | 91.44 | 480 | 65.59 |
7b | 4 | 93.61 | 480 | 59.60 | 13a | 4 | 92.54 | 420 | 67.66 |
7c | 3 | 86.59 | 420 | 63.63 | 13b | 5 | 88.50 | 460 | 66.58 |
8a | 4 | 91.48 | 480 | 57.65 | 13c | 4 | 89.49 | 360 | 67.45 |
8b | 4 | 89.55 | 360 | 68.54 | 13d | 6 | 88.48 | 340 | 68.46 |
Herein, the key starting material, 2-mercapto-3-phenylquinazolinone 3, was prepared via treating anthranilic acid with phenyl isothiocyanate in boiling ethanol containing a few drops of triethylamine.23 2-Chloro-N-(substituted)acetamide derivatives (4a–c) were prepared by treatment of methyl 4-aminobenzoate, 4-aminoacetophenone and sulfanilamide with chloroacetyl chloride under basic conditions at room temperature.
Alkylation of quinazoline 3 with 2-chloro-N-(substituted)acetamide derivatives 4a–c was carried out afterwards to achieve both S-alkylated and N-alkylated products 5a–c and 6a–c, respectively (Scheme 1). The structures of compounds 5a–c, and 6a–c were inferred from their elemental analyses, IR, NMR and MS spectra and were compatible with the proposed structures. Thus, the IR spectra exhibited two absorption bands at around ν = 3414 and 3228 cm−1 due to NH groups and two strong carbonyl absorption bands ranging from 1725–1685 cm−1. Their 1H NMR spectra provided exchangeable singlets of NH groups around the region δ = 13.00–10.30 ppm.
In turn, the sulfonamide derivative 5c was further reacted with phenyl isocyanate or phenyl isothiocyanate in DMF under microwave irradiation at 200 W power for 2 min to afford urea or thiourea derivatives 7a and b, respectively (Scheme 1). The structures of 7a and b were deduced by the absence of the NH2 absorption band characteristic for compound 5c in the IR and 1H NMR spectra.
One-pot multicomponent reaction of the acetyl derivative 5b with malononitrile and the appropriate aromatic aldehydes, namely 4-methoxy-, 4-chloro- or 4-nitrobenzaldehyde, in dioxane containing ammonium acetate under microwave irradiation at 200 W power for 2–3 min furnished the corresponding enaminonitrile derivatives, namely N-(4-(6-amino-4-(4-substituted phenyl)-5-cyanopyridin-2-yl)phenyl)-2-(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-ylthio)-acetamide (8a–c), respectively. The structures of these compounds were established based on their analytical and spectral data. Thus, the IR spectra showed the existence of cyano group absorption bands at around ν = 2226–2216 cm−1. Their 1H NMR spectra exhibited singlets in the region of δ = 13.00–10.30 ppm, assigned to two exchangeable protons, which are attributed to the NH2 protons of the pyridine moiety.
On the other hand, chalcones and their derivatives are known to be important intermediates in organic synthesis because they serve as building block synthons for a wide variety of heterocyclic compounds which are of physiological importance.24–26 The presence of an enone functionality in the chalcone moiety confers biological activity, like anti-inflammatory,27 antifungal,28 antioxidant,29 antimalarial,30 antituberculosis,31 anti-HIV32 and antitumor33 activities. Indeed, Claisen–Schmidt condensation of ketone 5b with the same aromatic aldehydes as in Scheme 2, in the presence of NaOH, under microwave irradiation, afforded the corresponding α,β-unsaturated ketones (chalcones), namely N-(4-(3-(4-substituted phenyl)acryloyl)phenyl)-2-(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-ylthio)acetamide (9a–c), respectively. The structures of these chalcones were substantiated by their analytical and spectral data. The 1H NMR spectra displayed the absence of the singlet of methyl protons in compound 5b (cf. Experimental).
Noteworthily, hydrazinolysis of compound 5a using hydrazine hydrate in n-butanol under reflux conditions failed to produce the expected hydrazide 10, but afforded 2-hydrazinyl-3-phenylquinazoline derivative 11 (Scheme 3). The structure of 11 was confirmed by spectral data and by direct comparison with an authentic sample prepared by treating the starting quinazoline 3 with hydrazine hydrate in refluxing dioxane.23 Subsequently, the reaction of hydrazinoquinazoline 11 with 2-chloro-N-acetamide derivatives 4a–c in DMF containing two drops of triethylamine under microwave irradiation furnished the hydrazinylacetamide derivatives, namely N-(4-substituted phenyl)-2-(2-(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)hydrazinyl)-acetamide (12a–c). The structures of all newly synthesized compounds were confirmed on the basis of spectral and elemental analyses, which were in full agreement with the proposed structures.
Finally, condensation of compound 11 with different aromatic aldehydes, namely 2-hydroxy-, 4-hydroxy-, 2-methoxy-, or 4-nitrobenzaldehyde under microwave irradiation or using the conventional method in glacial acetic acid produced the corresponding hydrazone derivatives 13a–d (Scheme 3). In the 1H NMR spectra of all compounds, a singlet peak corresponding to the imine proton (NCH) was observed as a sharp singlet downfield of the aryl proton peaks, as well as a broad singlet for the NH group, while the singlet of NH2 protons was absent (cf. Experimental).
Compd | IC50 (nM) | Compd | IC50 (nM) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Data are displayed as mean ± S. E. M. n = 3 (three independent repeats). Statistical analysis was carried out using one-way ANOVA followed by Dunnett post hoc test.b Statistically significant from Olaparib at p < 0.05. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Olaparib | 30.38 ± 1.61 | 9a | 101.6b ± 5.88 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5a | 336.0b ± 13.08 | 9b | 174.3b ± 8.72 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5b | 218.3b ± 10.34 | 9c | 313.7b ± 15.35 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5c | 354.1b ± 18.28 | 12a | 39.07 ± 3.89 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6a | 55.96 ± 2.95 | 12b | 89.69b ± 5.67 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6b | 64.67 ± 3.38 | 12c | 27.89 ± 3.45 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7a | 128.4b ± 8.57 | 13a | 102.3b ± 6.84 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7b | 79.06b ± 4.31 | 13b | 44.16 ± 3.12 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8a | 32.49 ± 2.64 | 13c | 45.64 ± 2.86 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8b | 154.66b ± 8.76 | 13d | 485.3b ± 26.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8c | 403.2b ± 21.27 |
The higher potency of compounds 6a–b when compared to compounds 5a–b revealed that substitution at position-1 of the quinazoline was better than at position-2. Also, the extension of compound 5c to give compounds 7a and 7b significantly increased the potency, suggesting extra hydrophobic binding in the AD site of PARP-1. In compounds 8a–c, the methoxy derivative displayed higher activity than the chloro and nitro derivatives, suggesting that the presence of an electron donating group is more preferred than an electron withdrawing group. This was also observed in compounds 9a–c. Interestingly, series 12a–c showed very good potency in comparison to Olaparib with the sulfonamide derivative 12c showing the highest activity among all of the synthesized compounds. Of the hydrazone derivatives 13a–d, compound 13b showed higher activity then 13a, suggesting that substitution in position-4 of the phenyl ring is better than at position-2. Also, the methoxy derivative 13c showed better potency than the hydroxyl derivative 13a and the nitro substitution in 13d greatly decreased the potency, suggesting that electron donating groups were preferred over electron withdrawing groups.
Compound | DNA content% | |||
---|---|---|---|---|
% G0–G1 | % S | % G2–M | % Pre G1 | |
12a/MCF7 | 38.51 | 23.43 | 38.06 | 26.55 |
12c/MCF7 | 43.28 | 33.23 | 23.49 | 19.31 |
Stauroporine/MCF7 | 37.19 | 26.22 | 36.59 | 31.74 |
cont. MCF7 | 59.26 | 34.17 | 6.57 | 1.57 |
![]() | ||
Fig. 2 Cell cycle analysis and apoptosis effect in the MCF-7 cell line when treated with compounds 12a and 12c. |
Apoptosis | Necrosis | |||
---|---|---|---|---|
Total | Early | Late | ||
12a/MCF7 | 26.55 | 3.47 | 13.8 | 9.28 |
12c/MCF7 | 19.31 | 6.11 | 10.15 | 3.05 |
Stauroporine/MCF7 | 31.74 | 5.47 | 19.04 | 7.23 |
cont. MCF7 | 1.57 | 0.61 | 0.11 | 0.85 |
Compd | ΔG kcal mol−1 | No. of hydrogen bonding | No. of cationic-π interactions |
---|---|---|---|
5a | −51.47 | 4 (TYR907, GLY863, TYR896, ARG878) | 3 (TYR907, HIS862, LYS903) |
5b | −53.18 | 4 (TYR907, HIS862, TYR896, ARG878) | 3 (TYR907, HIS862, LYS903) |
5c | −51.30 | 6 (TYR907, GLY863, HIS862, TYR896, ARG878, TYR907) | 3 (TYR907, HIS862, LYS903) |
6a | −57.87 | 5 (GLY863, HIS862, TYR896, ARG878, ARG878) | 3 (TYR907, HIS862, LYS903) |
6b | −55.23 | 5 (TYR907, GLY863, HIS862, TYR896, ARG878) | 3 (TYR907, HIS862, LYS903) |
7a | −58.20 | 7 (TYR907, GLY863, HIS862, GLY888, ALA880, ARG878, ARG878) | 3 (TYR907, HIS862, ARG878) |
7b | −58.43 | 6 (TYR907, GLY863, HIS862, GLY888, ALA880, ARG878, ARG878) | 3 (TYR907, HIS862, ARG878) |
8a | −62.52 | 6 (TYR907, GLY863, HIS862, TYR896, ARG878, ASN868) | 3 (TYR907, HIS862, HIS862) |
8b | −57.54 | 5 (TYR907, GLY863, HIS862, TYR896, ARG878) | 3 (TYR907, HIS862, HIS862) |
8c | −54.18 | 5 (TYR907, GLY863, HIS862, TYR896, ARG878) | 3 (TYR907, HIS862, HIS862) |
9a | −61.58 | 6 (TYR907, GLY863, HIS862, GLY894, ARG878, ASN868) | 3 (TYR907, HIS862, LYS903) |
9b | −61.10 | 4 (TYR907, GLY863, GLY894, ARG878) | 3 (TYR907, HIS862, LYS903) |
9c | −58.25 | 5 (TYR907, GLY863, HIS862, GLY894, ARG878) | 3 (TYR907, HIS862, LYS903) |
12a | −59.61 | 9 (TYR907, SER904, GLY863, HIS862, GLY888, TYR889, TYR896, ARG878, ARG878) | 3 (TYR907, HIS862, LYS903) |
12b | −58.01 | 8 (TYR907, SER904, GLY863, HIS862, GLY888, TYR889, TYR896, ARG878) | 3 (TYR907, HIS862, LYS903) |
12c | −59.56 | 8 (TYR907, SER904, GLY863, HIS862, GLY888, TYR889, TYR896, ARG878) | 3 (TYR907, HIS862, LYS903) |
13a | −53.14 | 5 (TYR907, TYR907, GLY863, HIS862, GLY888) | 3 (TYR907, HIS862, LYS903) |
13b | −55.98 | 6 (TYR907, TYR907, GLY863, HIS862, ALA880, ARG878) | 3 (TYR907, HIS862, LYS903) |
13c | −55.01 | 5 (TYR907, TYR907, GLY863, HIS862, TYR896) | 3 (TYR907, HIS862, LYS903) |
13d | −50.56 | 5 (TYR907, TYR907, GLY863, HIS862, TYR889) | 3 (TYR907, HIS862, LYS903) |
Olaparib | −60.60 | 4 (GLY863, SER904, TYR896, ARG878) | 3 (TYR907, HIS862, LYS903, TYR896) |
In Olaparib, the phthalazinone scaffold occupies the NI-site and the carbonyl group of the ring interacts with Gly863 and Ser904 through characteristic hydrogen bonds, and it also shows π–π stacking interactions with Tyr907 and His862. Interestingly, the 2-fluorobenzamide linker formed a π–π interaction with Tyr896 and a hydrogen bond with the backbone of Tyr896. Also, the carbonyl on the piperazine ring formed a H-bond with Arg878. The cyclopropyl group was nicely inserted into a deep hydrophobic pocket.
Interpretation of the docking results showed that the majority of the designed compounds fit into the active site of PARP-1; most of them displayed comparable docking scores and binding modes similar to that of Olaparib and were able to reproduce the main interactions observed in Olaparib.
As expected, the quinazoline scaffold occupied the NI site, where the carbonyl group formed two hydrogen bonds with His862 and Gly863. Also, the N of the ring formed a hydrogen bond with Tyr907 in all of the synthesized compounds, except for 6a and 6b which formed a hydrogen bond with Tyr907 but via the ring sulfur. The quinazoline scaffold also showed π–π stacking interactions with Tyr907 and His862 previously observed in Olaparib. Additionally, it formed a π-cation interaction with Lys903 (Fig. 7).
![]() | ||
Fig. 7 2D interaction diagram of 7b in the active site of PARP-1 and 2D interaction diagram of 8a in the active site of PARP-1. |
In compounds 5a–c and 6a–b, the carbonyl group of the amide formed a hydrogen bond with Tyr896 similar to that of Olaparib and their terminal groups formed a hydrogen bond with Arg878 similar to that of Olaparib. When comparing this group of compounds, 6a and 6b showed better docking energies in comparison to 5a and 5b, indicating that the substitution on the nitrogen is better than that on the sulfur of the quinazolinone ring and this was also consistent with their enzyme assay results.
Interestingly, compounds 7a and 7b showed extra interactions; the amino group forms a hydrogen bond with Gly888 and the SO group forms a hydrogen bond with Ala880 (Fig. 8), and this explained the increase in potency in comparison to 5c.
![]() | ||
Fig. 8 2D interaction diagram of 12a in the active site of PARP-1 and 3D interaction diagram of 12a in the active site of PARP-1. |
Compounds 8a–c showed the same interactions as 5a–b but Arg878 formed a hydrogen bond with the cyano group instead of the terminal substitution (Fig. 8). The methoxy group in 8a and 9a shows an extra hydrogen bond with Asn868, which might explain their higher potency than 8b–c and 9b–c, respectively, suggesting that methoxy substitution was better than chloro and nitro groups.
Compounds 12a–c showed additional interactions through hydrogen bonds between the NH of the hydrazine formed and Gly888, and between the amide NH and Tyr889. Additionally, the ester function or sulfonamide moieties form two H bonds with Arg878, which could explain the high potency of this series (Fig. 9). Compounds 13a–c showed the essential interactions with the NI site, but they lacked the hydrogen bond with the linker. Moreover, different substitutions on the terminal phenyl ring formed different interactions with various amino acids in the AD site of the enzyme. The presence of a hydroxyl group in position-4 gave the best docking score and the hydroxyl group was involved in two hydrogen bond interactions, which explains why 13b showed the best potency among this group.
![]() | ||
Fig. 9 Predicted activity versus experimental activity (−log![]() |
−log![]() | (1) |
Compd | Experimental activity (−log![]() |
Predicted activity (−log![]() |
Residual | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a 7a, 7b, and 13b were used for external validation through calculating their predicted activity from the QSAR model constructed using the training set. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5a | 6.482 | 7.043 | −0.561 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5b | 6.665 | 6.662 | 0.003 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5c | 6.453 | 6.671 | −0.218 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6a | 7.254 | 7.176 | 0.078 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6b | 7.191 | 6.970 | 0.221 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8a | 7.478 | 7.298 | 0.18 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8b | 6.810 | 7.109 | −0.299 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8c | 6.396 | 6.381 | 0.015 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9a | 6.992 | 6.836 | 0.156 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9b | 6.761 | 6.734 | 0.027 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9c | 6.507 | 6.432 | 0.075 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12a | 7.389 | 7.375 | 0.014 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12b | 7.044 | 7.297 | −0.253 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12c | 7.526 | 7.346 | 0.180 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13a | 6.985 | 7.004 | −0.019 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13c | 7.337 | 7.209 | 0.128 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13d | 6.315 | 6.224 | 0.091 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Olaparib | 7.518 | 7.333 | 0.185 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7aa | 6.886 | 6.947 | −0.061 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7ba | 7.103 | 7.335 | −0.232 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13ba | 7.348 | 7.196 | 0.152 |
The regression values were as follows: r2 = 0.754, q2 = 0.638 and least-squared error = 0.0403.
It was clearly illustrated that the IC50 values predicated by our QSAR model were very close to those experimentally observed, indicating that this model can be used productively for the predication of more effective hits having the same skeletal framework.
In the BBB plot, most of the compounds except for 5a, 5b, 6a, 6b, 13a, 13b and 13c fall outside of the 99% ellipse. Hence, these compounds may not be able to penetrate the blood brain barrier; hence, the chances of CNS side effects are predicted to be low. Meanwhile, for compounds 5a, 5b, 6a, 6b, 13a, 13b and 13c there is a probability of causing CNS side effects.
In the HIA plot, most of the compounds fell inside the 99% ellipse, and are thus estimated to have good human intestinal absorption, except for 7a, 7b, 8a, 8b, 8c, 9a, 9b, 9c and 12c, which show poor absorption. The ADME aqueous solubility level of most of the compounds was found to be 2 or 1, which indicates low aqueous solubility. The hepatotoxicity level of all compounds was 1. Hence, the compounds are predicted to possess hepatotoxicity. Further experimental studies are required to determine the hepatotoxic dose levels.
Most of the compounds are predicted as non-inhibitors of CYP2D6, and hence side effects (i.e. liver dysfunction) are not expected upon administration of these compounds, except for compounds 5a, 5b, 6b, 12a, 12b, 13a, 13b, 13c and 13d.
The plasma protein-binding model predicts whether a compound is likely to be highly bound to carrier proteins in the blood. There is a high probability that the synthesized compounds bind to plasma proteins.
PSA is a key property that has been linked to drug bioavailability. Thus, passively absorbed molecules with PSA > 140 are thought to have low bioavailability. Most of the synthesized compounds have PSA values ranging from 65.04–139.61, and thus, they are predicted to present good passive oral absorption, except for compounds 8c and 12c which had a PSA of more than 140. The calculated parameters from the ADMET study are tabulated in Table 7 (cf. ESI†).
Cpd ID | BBB_Leva | Absorp_Levb | AQ SOlLEVc | Hepatoxd | Hepatox probe | CYP2D6f | CYP2D6Probg | PPB_Levh | AlogP98i | ADEM_PSA_2Dj | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Blood brain barrier level; 4 = undefined, 2 = medium penetration, 1 = high penetration.b Absorption level; 3 = very low absorption, 2 = low absorption, 1 = moderate absorption, 0 = good absorption.c Aqueous solubility level; 4 = optimal, 3 = good, 2 = low solubility, 1 = very low but soluble, 0 = extremely low.d Hepatotoxicity level; 1 = toxic, 0 = nontoxic.e Hepatotoxicity probability.f CYP2D6 inhibition; 1 = likely to inhibit, 0 = non inhibitor.g Cyp2D6 inhibition probability.h Plasma protein binding; 2 = more than 95%, 1 = more than 90%, 0 = less than 90%.i Lipophilicity descriptor; compounds must have log![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5a | 2 | 0 | 2 | 1 | 0.841 | 1 | 0.732 | 2 | 4.305 | 88.318 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5b | 2 | 0 | 2 | 1 | 0.821 | 1 | 0.712 | 2 | 4.189 | 79.388 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5c | 4 | 1 | 2 | 1 | 0.827 | 0 | 0.485 | 2 | 3.154 | 123.22 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6a | 2 | 0 | 2 | 1 | 0.94 | 0 | 0.495 | 2 | 3.944 | 80.347 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6b | 2 | 0 | 2 | 1 | 0.927 | 1 | 0.633 | 2 | 3.828 | 71.417 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7a | 4 | 2 | 2 | 1 | 0.88 | 0 | 0.297 | 2 | 4.717 | 139.61 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7b | 4 | 2 | 1 | 1 | 0.874 | 0 | 0.297 | 2 | 5.616 | 122.31 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8a | 4 | 2 | 1 | 1 | 0.952 | 0 | 0.346 | 2 | 6.419 | 131.75 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8b | 4 | 3 | 1 | 1 | 0.953 | 0 | 0.316 | 2 | 7.1 | 122.83 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8c | 4 | 3 | 1 | 1 | 0.951 | 0 | 0.316 | 2 | 6.33 | 165.64 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9a | 4 | 2 | 1 | 1 | 0.821 | 0 | 0.366 | 2 | 6.305 | 88.318 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9b | 4 | 2 | 1 | 1 | 0.814 | 0 | 0.475 | 2 | 6.986 | 79.388 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9c | 4 | 2 | 1 | 1 | 0.834 | 0 | 0.425 | 2 | 6.216 | 122.21 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12a | 4 | 0 | 2 | 1 | 0.814 | 1 | 0.613 | 2 | 2.995 | 113.93 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12b | 4 | 0 | 2 | 1 | 0.834 | 1 | 0.623 | 2 | 2.88 | 105.01 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12c | 4 | 2 | 2 | 1 | 0.827 | 0 | 0.475 | 2 | 1.845 | 148.84 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13a | 2 | 0 | 2 | 1 | 0.953 | 1 | 0.603 | 2 | 4.011 | 76.925 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13b | 2 | 0 | 2 | 1 | 0.973 | 1 | 0.742 | 2 | 4.011 | 76.925 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13c | 1 | 0 | 2 | 1 | 0.933 | 1 | 0.871 | 2 | 4.236 | 65.04 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13d | 4 | 0 | 2 | 1 | 0.953 | 1 | 0.524 | 2 | 4.147 | 98.933 |
Cell cycle analysis showed that 12a and 12c caused cell growth arrest at the G2/M phase in MCF-7 cells. Also, both compounds were shown to increase the programmed apoptosis compared with the control. Moreover, molecular docking of the most active compounds into the PARP-1 active site displayed a similar binding mode to Olaparib. A computational QSAR study was performed for the synthesized compounds. Collectively, these results revealed that some of the newly synthesized compounds could serve as hit potent PARP-1 inhibitors and anticancer agents.
The genetic function approximation model was employed to search for optimal QSAR models that combine high quality binding pharmacophores with other molecular descriptors and are capable of correlating bioactivity variation across the used training set collection. The trials were held while changing the independent properties until the best model with the least variables was obtained. The QSAR model was validated employing leave one-out cross-validation, r2 (squared correlation coefficient value), and external validation using compounds 7a, 7b and 13b, as well as residuals between the predicted and experimental activity of the training and test set.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ra05943a |
This journal is © The Royal Society of Chemistry 2020 |