Gyeongmin
Kim
,
Jihun
Han
,
Dongwon
Kim
and
Ok-Sang
Jung
*
Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea. E-mail: oksjung@pusan.ac.kr; Fax: +82 51 5163522; Tel: +82 51 5103240
First published on 15th January 2024
Self-assembly of Zn(NO3)2 with tris(2-(isoquinolin-5-yloxy)ethyl)amine (L) as a C3-symmetric tridentate N-donor in a mixture of dioxane and acetonitrile gives rise to [NO3@Zn3(NO3)5L2]·2CH3CN in the form of crystals of sandwich-shaped cages encapsulating a nitrate, whereas the same self-assembly reaction in a different mixture, benzene and ethanol, produces [Zn(NO3)L(H2O)]NO3·H2O in the form of crystals of 3D networks with cml {4,62}2{42,610,83} topology. The most interesting feature is the transformation of [NO3@Zn3(NO3)5L2]·2CH3CN crystals into [Zn(NO3)L(H2O)]NO3·H2O crystals in ethanol. A significant difference in heterogeneous transesterification catalysis between the two species is observed. On the other hand, self-assembly of Co(NO3)2 with L gives rise to 3D networks, [Co(NO3)L(H2O)]NO3·H2O, whereas self-assembly of Ni(NO3)2 and Cu(NO3)2 with L produces sandwich-type cages, [NO3@Ni3(NO3)3L2(H2O)6]2NO3·C2H5OH·C6H6 and [NO3@Cu3(NO3)5L2(C2H5OH)]·C2H5OH·2C6H6, respectively, with the latter notably showing heterogeneous catechol oxidation catalytic effects.
Scheme 1 Overall synthesis including dimensional transformation and catalysis of M3L2 cages into 3D networks. |
Fig. 2 Local geometry around M2+ (a) and 3D networks of [Zn(NO3)L(H2O)]NO3·H2O and [Co(NO3)L(H2O)]NO3·H2O with cml {4,62}2{42,610,83} topology (b). |
[NO3@Zn3(NO3)5L2]·2CH3CN | [NO3@Ni3(NO3)3L2(H2O)6]2NO3·C2H5OH·C6H6 | [NO3@Cu3(NO3)5L2(C2H5OH)]·C2H5OH·2C6H6 | |
---|---|---|---|
M–N (quinoline) (Å) | 2.001(4)–2.054(3) | 2.11(1)–2.131(4) | 1.992(7)–2.024(8) |
M–O (anion) (Å) | 1.999(7)–2.071(7) | 2.036(8)–2.16(1) | 1.98(2)–2.256(9) |
M⋯M (Å) | 5.258(2)–5.887(1) | 5.1759(8) | 4.7543(4)–5.6949(5) |
N–M–N (°) | 120.5(2)–128.5(2) | 177.3(3) | 167.6(4)–178.3(3) |
[Zn(NO3)L(H2O)](NO3)·H2O | [Co(NO3)L(H2O)](NO3)·H2O | ||
---|---|---|---|
M–N (quinoline) (Å) | 2.091(3)–2.179(3) | 2.103(3)–2.175(3) | |
M–O (anion) (Å) | 2.206(3) | 2.197(3) | |
M–O (H2O) (Å) | 2.031(3) | 2.056(3) |
Fig. 3 Transformation process including morphology change of [NO3@Zn3(NO3)5L2]·2CH3CN into [Zn(NO3)L(H2O)]NO3·H2O in 95% ethanol. |
Fig. 4 PL spectra of L (black), [NO3@Zn3(NO3)5L2]·2CH3CN (blue), and [Zn(NO3)L(H2O)]NO3·H2O (red), and transformation of [NO3@Zn3(NO3)5L2]·2CH3CN into [Zn(NO3)L(H2O)]NO3·H2O (red dotted line). |
Footnote |
† Electronic supplementary information (ESI) available: Experimental details and crystal structure determination. TG curves, IR spectra, and 1H NMR of each sample ([Zn(NO3)L(H2O)](NO3)·H2O, [NO3@Zn3(NO3)5L2]·2CH3CN, [Co(NO3)L(H2O)](NO3)·H2O, [NO3@Ni3(NO3)3L2(H2O)6]2NO3·C2H5OH·C6H6, and [NO3@Cu3(NO3)5L2(C2H5OH)]·C2H5OH·2C6H6). CCDC 2320515–2320519. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d3ce01298k |
This journal is © The Royal Society of Chemistry 2024 |