Issue 10, 2011

Multi-scale study of thermal stability of lithiated graphite

Abstract

Safety remains a major issue for the graphite anode used in lithium-ion batteries. The thermal stability of lithiated graphite was studied by atomic-scale characterization and cell tests. The results revealed that the thermal decomposition of the solid–electrolyte interface is the most easily triggered chemical reaction in lithium-ion cells and plays a critical role in determining the battery safety. It was also shown that natural graphite containing a small amount of 3R graphite had much better thermal stability than mesocarbon microbeads that had no detectable 3R graphite.

Graphical abstract: Multi-scale study of thermal stability of lithiated graphite

Supplementary files

Article information

Article type
Paper
Submitted
20 May 2011
Accepted
15 Jun 2011
First published
05 Aug 2011

Energy Environ. Sci., 2011,4, 4023-4030

Multi-scale study of thermal stability of lithiated graphite

Z. Chen, Y. Qin, Y. Ren, W. Lu, C. Orendorff, E. P. Roth and K. Amine, Energy Environ. Sci., 2011, 4, 4023 DOI: 10.1039/C1EE01786A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements