Issue 15, 2011

Symmetric dithiodigalactoside: strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins

Abstract

Thioglycosides offer the advantage over O-glycosides to be resistant to hydrolysis. Based on initial evidence of this recognition ability for glycosyldisulfides by screening dynamic combinatorial libraries, we have now systematically studied dithiodigalactoside on a plant toxin (Viscum album agglutinin) and five human lectins (adhesion/growth-regulatory galectins with medical relevance e.g. in tumor progression and spread). Inhibition assays with surface-presented neoglycoprotein and in solution monitored by saturation transfer difference NMR spectroscopy, flanked by epitope mapping, as well as isothermal titration calorimetry revealed binding properties to VAA (Ka: 1560 ± 20 M−1). They were reflected by the structural model and the affinity on the level of toxin-exposed cells. In comparison, galectins were considerably less reactive, with intrafamily grading down to very minor reactivity for tandem-repeat-type galectins, as quantitated by radioassays for both domains of galectin-4. Model building indicated contact formation to be restricted to only one galactose moiety, in contrast to thiodigalactoside. The tested glycosyldisulfide exhibits selectivity between the plant toxin and the tested human lectins, and also between these proteins. Therefore, glycosyldisulfides have potential as chemical platform for inhibitor design.

Graphical abstract: Symmetric dithiodigalactoside: strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2010
Accepted
21 Apr 2011
First published
21 Apr 2011

Org. Biomol. Chem., 2011,9, 5445-5455

Symmetric dithiodigalactoside: strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins

S. Martín-Santamaría, S. André, E. Buzamet, R. Caraballo, G. Fernández-Cureses, M. Morando, J. P. Ribeiro, K. Ramírez-Gualito, B. de Pascual-Teresa, F. J. Cañada, M. Menéndez, O. Ramström, J. Jiménez-Barbero, D. Solís and H. Gabius, Org. Biomol. Chem., 2011, 9, 5445 DOI: 10.1039/C0OB01235A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements