Issue 5, 2012

Towards an organic thermally regenerative fuel cell for truck engines

Abstract

A thermally regenerative fuel cell (TRFC) on board a long-haul truck would convert waste heat from the engine or exhaust into electrical energy. We propose a TRFC in which waste-heat drives the endothermic dehydrogenation of a secondary benzylic alcohol to the corresponding ketone in a catalytic reaction chamber adjacent to the engine. 1-Phenyl-1-propanol has been identified as a suitable alcohol. In a fully functioning TRFC, the H2 produced from the dehydrogenation will be sent to the fuel cell's anode, while the ketone, propiophenone, will be sent to the cathode to serve as an oxidant, together producing electricity to charge a battery that could power auxiliary vehicle components. The electrochemical reduction of the ketone back to the original benzylic alcohol would take place at the cathode. For such a system to be viable, both reactions must be very selective and rapid. Herein, the initial development of this system and the implications of catalyst and benzylic alcohol choice on the performance of both of these reactions are discussed. For the dehydrogenation of 1-phenyl-1-propanol, Pd/SiO2 offers the highest selectivity (99.65%) at 200 °C. For the re-hydrogenation of the analogous ketone, propiophenone, palladium catalysts offer the highest selectivity, although the highest rates are observed for platinum immobilized on Vulcan XC-72 carbon support; surface modification of commercial catalysts with n-butyl tin also affects the selectivity and rate in a manner that depends on the choice of catalyst support. It has also been shown that the electronic and steric properties of the phenyl ring substituents and the identity of the alkyl chain affect the rate and selectivity.

Graphical abstract: Towards an organic thermally regenerative fuel cell for truck engines

Article information

Article type
Paper
Submitted
15 Nov 2011
Accepted
27 Feb 2012
First published
28 Feb 2012

Energy Environ. Sci., 2012,5, 7111-7123

Towards an organic thermally regenerative fuel cell for truck engines

A. Carrier, D. Dean, V. R. Little, J. Vandersleen, B. Davis and P. G. Jessop, Energy Environ. Sci., 2012, 5, 7111 DOI: 10.1039/C2EE03170A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements