Modelling electrified interfaces in quantum chemistry: constant charge vs. constant potential†
Abstract
The proper description of electrified metal/solution interfaces, as they occur in electrochemical systems, is a key component for simulating the unique features of electrocatalytic reactions using electronic structure calculations. While in standard solid state (plane wave, periodic boundary conditions) density functional theory (DFT) calculations several models for describing electrochemical environments exist, for cluster models in a quantum chemistry approach (atomic orbital basis, finite system) this is not straightforward. In this work, two different approaches for the theoretical description of electrified interfaces of
- This article is part of the themed collection: Electrified surface chemistry