Issue 12, 2013

Photocatalytic water oxidation with cobalt-containing tungstobismutates: tuning the metal core

Abstract

A new type of tungstobismutate water oxidation catalyst (WOC) with a disordered Co|W core, [{Co(H2O)3}2{CoBi2W19O66(OH)4}]10− (1) was tested for visible-light-driven performance and compared to a series of isostructural Co- and Mn-containing polyoxometalates with variable transition metal contents, ([Co2.5(H2O)6{Bi2W19.5O66(OH)4}]8− (2) and [Mn1.5(H2O)6{Bi2W20.5O68(OH)2}]6− (3)). All compounds were structurally characterized, and no indications for significant decomposition under catalytic conditions for visible-light-driven water oxidation ([Ru(bpy)3]2+ as photosensitizer (PS) and S2O82− as electron acceptor in different buffer systems) were found. For the first time, subtle differences in the core disorder patterns of isostructural POM-WOCs were revealed to be decisive for the catalytic activity of (1) (maximum TON of 21 with 97% oxygen yield for 115 μM (1)). Performance comparison of the POM series sheds new light on the structure–activity relationships for targeted POM-WOC construction. Indeed, the Co disorder differences between (1) and (2) exclusively affect the sterically more accessible external site of the two crystallographically independent Co core positions which has a 25% higher Co occupancy in (1). This points to a stereoselective reaction pattern for the tetranuclear POM core of WOC (1) which might open up novel construction strategies for the economic redesign of sandwich-type POM-WOCs. In parallel, we demonstrate for the POM series (1)–(3) that electrochemical measurements under catalytic conditions are a promising and convenient pre-screening strategy for WOC activity. Furthermore, POM/PS complex formation of (1) with [Ru(bpy)3]2+ is investigated in detail, and the different roles of Mn- and Co-centers in POM-WOC synthesis are compared.

Graphical abstract: Photocatalytic water oxidation with cobalt-containing tungstobismutates: tuning the metal core

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2013
Accepted
06 Sep 2013
First published
14 Oct 2013
This article is Open Access
Creative Commons BY license

Catal. Sci. Technol., 2013,3, 3117-3129

Photocatalytic water oxidation with cobalt-containing tungstobismutates: tuning the metal core

F. Evangelisti, P. Car, O. Blacque and G. R. Patzke, Catal. Sci. Technol., 2013, 3, 3117 DOI: 10.1039/C3CY00475A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements