Investigation of the effect of pore size on gas uptake in two fsc metal–organic frameworks†
Abstract
Two porous metal–organic frameworks (1 and 2) with a fsc topology based on mixed ligands have been assembled and characterized. The different pillared ligands (pyrazine for 1 and 4,4′-bipyridine for 2) significantly influence the pore size of the frameworks. Gas uptake measurements reveal that complex 1 possesses higher H2, CO2, and CH4 uptake capacities than 2, although the surface area of 1 is lower than that of complex 2. These results further experimentally prove that the pore size plays an important role in gas uptake in porous MOFs, and the slit pore with a size of ∼6 Å exhibits stronger interactions with gas molecules.