Issue 3, 2014

Metallohexacycles containing 4′-aryl-4,2′:6′,4′′-terpyridines: conformational preferences and fullerene capture

Abstract

4′-(4-Biphenylyl)-4,2′:6′,4′′-terpyridine (1) reacts with ZnCl2 or ZnBr2 to produce discrete metallohexacycles instead of the expected one-dimensional coordination polymers. Structural determination of [{ZnCl2(1)}6] and [{ZnBr2(1)}6] reveals that the metallomacrocycles adopt a conformation in which the biphenyl domains are in an alternating up/down arrangement (conformer I). The hexamers pack into tubes; within each tube, biphenyl domains of every second hexamer are interdigitated, and these assemblies then interlock to produce a rigid architecture supported by pyridine–phenyl face-to-face contacts. π-Stacking between 4,2′:6′,4′′-tpy domains operates between adjacent tubes. Reaction of ZnCl2 or ZnBr2 with 4′-(2′,3′,4′,5′,6′-pentafluorobiphenyl-4-yl)-4,2′:6′,4′′-terpyridine (2) leads to [{ZnCl2(2)}6] and [{ZnBr2(2)}6], each crystallizing in two conformations; the centrosymmetric chair-conformer (II) is dominant with respect to the tub-like conformer I. Both conformers pack into tube assemblies, but that consisting of conformer II is less rigid than that of I. Reaction of 4′-(4-(naphthalen-1-yl)phenyl)-4,2′:6′,4′′-terpyridine (3) with ZnCl2 or ZnBr2 leads to [{ZnX2(2)}6] (X = Cl, Br) in conformer I; disordering of the naphthyl substituents is problematic. Assembly of the metallohexacycle in the presence of C60 results in the formation of the host–guest complex [2{ZnCl2(3)}6·C60]·6MeOH·16H2O. The [{ZnCl2(3)}6] units assemble into a tube-like array that mimics that observed in the parent host. In the host–guest complex, each crystallographically-ordered C60 is trapped between six ordered naphthyl units, three from one hexamer and three from its interdigitated partner, and the C60–six-naphthyl unit sits centrally within a second [{ZnCl2(3)}6] macrocycle. In contrast to previously described tube-like host–guest assemblies featuring fullerene entrapment, [2{ZnCl2(3)}6·C60] is unusual in having an ordered array of C60 molecules present in every other available cavity, despite the fact that sterically, the ‘empty’ cavity could, in principle, host a C60 guest.

Graphical abstract: Metallohexacycles containing 4′-aryl-4,2′:6′,4′′-terpyridines: conformational preferences and fullerene capture

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2013
Accepted
30 Oct 2013
First published
26 Nov 2013
This article is Open Access
Creative Commons BY license

CrystEngComm, 2014,16, 328-338

Metallohexacycles containing 4′-aryl-4,2′:6′,4′′-terpyridines: conformational preferences and fullerene capture

E. C. Constable, C. E. Housecroft, S. Vujovic and J. A. Zampese, CrystEngComm, 2014, 16, 328 DOI: 10.1039/C3CE42012D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements