Issue 104, 2014

A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO2–graphene hybrid system for enhanced photodegradation of methylene blue under visible light

Abstract

Here we report the experimental and theoretical study of two TiO2–graphene oxide (TG) and TiO2–reduced graphene oxide (TR) composites synthesized by a facile and ecological route, for enhanced visible light (∼470 nm) photocatalytic degradation of Methylene Blue (MB) (99% efficiency), with high rate constant values (1800% over bare TiO2). TG couples TiO2 nanopowder with Graphene Oxide (GO) while TR couples it with reduced graphene oxide (RGO). The present study, unlike previous reports, discusses never-before-reported double absorption edges obtained for both TG (3.51 eV and 2.51 eV) and TR (3.42 eV and 2.39 eV) composites, which represents the reason behind feasible visible light (2.56 eV) induced photocatalysis. TiO2 domains in the composites dominate the higher band edge, while GO/RGO domains explain the lower band edge. Formation of Ti–O–C bonds in both TG and TR drives the shifting upwards of the valence band edge and reduction in band gap. Further, these bonds provide a conductive pathway for charge carriers from TiO2 nanopowder to the degraded species via the GO/RGO matrix, resulting in decreased charge carrier recombination in TiO2 and enhanced efficiency. To attest that the developed theory is correct, density function theory (DFT) calculations were performed. DFT obtained energetics and electronic structures support experimental findings by demonstrating the role of the Ti–O–C bond, which results in double band edge phenomenon in composites. Finally, the mechanism behind MB degradation is discussed comprehensively and the effect of the weight percent of GO/RGO in the composite on the rate constant and photodegradation efficiency has been studied experimentally and explained by developing analytical equations.

Graphical abstract: A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO2–graphene hybrid system for enhanced photodegradation of methylene blue under visible light

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2014
Accepted
22 Oct 2014
First published
23 Oct 2014

RSC Adv., 2014,4, 59890-59901

Author version available

A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO2–graphene hybrid system for enhanced photodegradation of methylene blue under visible light

S. Umrao, S. Abraham, F. Theil, S. Pandey, V. Ciobota, P. K. Shukla, C. J. Rupp, S. Chakraborty, R. Ahuja, J. Popp, B. Dietzek and A. Srivastava, RSC Adv., 2014, 4, 59890 DOI: 10.1039/C4RA10572A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements