Issue 22, 2015

Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes

Abstract

In this paper in situ bismuth, antimony, tin modified electrodes and combinations thereof are explored towards the model target analytes cadmium(II) and lead(II), chosen since they are the most widely studied, to explore the role of the underlying electrode substrate with respect to boron-doped diamond, glassy carbon, and screen-printed graphite electrodes. It is found that differing electrochemical responses are observed, dependent upon the underlying electrode substrate. The electrochemical response using the available range of metallic modifications is only ever observed when the underlying electrode substrate exhibits relatively slow electron transfer properties; in the case of fast electron transfer properties, no significant advantages are evident. Furthermore these bismuth modified systems which commonly employ a pH 4 acetate buffer, reported to ensure the bismuth(III) stability upon the electrode surface can create create a problem when sensing at low concentrations of heavy metals due to its high background current. It is demonstrated that a simple change of pH can allow the detection of the target analytes (cadmium(II) and lead(II)) at levels below that set by the World Health Organisation (WHO) using bare graphite screen-printed electrodes.

Graphical abstract: Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2015
Accepted
25 Sep 2015
First published
25 Sep 2015
This article is Open Access
Creative Commons BY license

Analyst, 2015,140, 7598-7612

Author version available

Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes

C. W. Foster, A. P. de Souza, J. P. Metters, M. Bertotti and C. E. Banks, Analyst, 2015, 140, 7598 DOI: 10.1039/C5AN01692D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements