Issue 14, 2015

Challenges in the synthetic routes to Mn(BH4)2: insight into intermediate compounds

Abstract

We have studied the reaction of MnCl2 with MBH4 (M = Li+, Na+, K+) in Et2O. Crystal structures of two new intermediates, named [{M(Et2O)2}Mn2(BH4)5] (M = Li+, Na+), were elucidated by X-ray diffraction. Mn(BH4)2 in a mixture with LiBH4 or NaBH4 forms upon the solvent removal in a vacuum. [{M(Et2O)2}Mn2(BH4)5] contains 2D layers formed by Mn and BH4 groups, linked through the alkali metal atoms coordinated to Et2O. The loss of the solvent molecules leads to the segregation of the partially amorphous or nanocrystalline LiBH4/NaBH4 and a creation of the 3D framework of the crystalline Mn(BH4)2. While using LiBH4 led to Mn(BH4)2 contaminated with LiCl, presumably due to an efficient trapping of the latter salt by the [Mn(BH4)2–Et2O] system, the reaction with NaBH4 produced chlorine-free Mn(BH4)2 accompanied with NaBH4. Using KBH4 led to the formation of K2Mn(BH4)4 as a second phase. Two pyridine-containing solvomorphs, [Mn(py)3(BH4)2] and [Mn(py)4(BH4)2]·2py, were isolated in pure form. However, Mn(BH4)2 partly decomposes upon removal of pyridine molecules.

Graphical abstract: Challenges in the synthetic routes to Mn(BH4)2: insight into intermediate compounds

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2014
Accepted
10 Feb 2015
First published
10 Feb 2015

Dalton Trans., 2015,44, 6571-6580

Author version available

Challenges in the synthetic routes to Mn(BH4)2: insight into intermediate compounds

N. A. Tumanov, D. A. Safin, B. Richter, Z. Łodziana, T. R. Jensen, Y. Garcia and Y. Filinchuk, Dalton Trans., 2015, 44, 6571 DOI: 10.1039/C4DT03807J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements