Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique†
Abstract
In this work, we first report a facile, low-cost and high-throughput method for photolithographical fabrication of microfluidic cloth-based analytical devices (μCADs) by simply using a cotton cloth as a substrate material and employing an inexpensive hydrophobic photoresist laboratory-formulated from commercially available reagents, which allows patterning of reproducible hydrophilic–hydrophobic features in the cloth with well-defined and uniform boundaries. Firstly, we evaluated the wicking properties of cotton cloths by testing the wicking rate in the cloth channel, in combination with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. It is demonstrated that the wicking properties of the cloth microfluidic channel can be improved by soaking the cloth substrate in 20 wt% NaOH solution and by washing the cloth-based microfluidic patterns with 3 wt% SDS solution. Next, we studied the minimum dimensions achievable for the width of the hydrophobic barriers and hydrophilic channels. The results indicate that the smallest width for a desired hydrophobic barrier is designed to be 100 μm and that for a desired hydrophilic channel is designed to be 500 μm. Finally, the high-throughput μCADs prepared using the developed fabrication technique were demonstrated for colorimetric assays of glucose and protein in artificial urine samples. It has been shown that the photolithographically patterned μCADs have potential for a simple, quantitative colorimetric urine test. The combination of cheap cloth and inexpensive high-throughput photolithography enables the development of new types of low-cost cloth-based microfluidic devices, such as “microzone plates” and “gate arrays”, which provide new methods to perform biochemical assays or control fluid flow.