Two novel Anderson-type polyoxometalate-based metal–organic complexes with high-efficiency photocatalysis towards degradation of organic dyes under UV and visible light irradiation†
Abstract
Two novel Anderson-type polyoxometalate (POM)-based metal–organic complexes (MOCs), namely, H{CuL0.51 [CrMo6(OH)6O18](H2O)}·0.5L1 (1) and {Cu2(L2)2[CrMo6(OH)5O19](H2O)2}·2H2O (2) (L1 = N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, L2 = N,N′-bis(3-pyridinecarboxamide)-1.3-propane), were hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction, IR spectra, powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). In complex 1, the bidentate [CrMo6(OH)6O18]3− (CrMo6) polyoxoanions bridge the CuII ions to generate a 1D Cu–CrMo6 inorganic chain, which is further connected by the μ2-bridging L1 ligands to form a 1D ladder-like chain. Complex 2 is a 3D POM-based metal–organic framework exhibiting a {412.63} topology, which is constructed from the quadridentate CrMo6 polyoxoanions and μ2-bridging L2 ligands. The flexible bis-pyridyl-bis-amide ligands with different spacer lengths have a significant effect on the final structures. In addition, pH shows great influence on the formation of the single-crystal phase. The photocatalytic activities of the title complexes on the degradation of methylene blue (MB) and rhodamine B (RhB) under UV and visible light have been investigated in detail.