Issue 7, 2015

Bioactive organic/inorganic hybrids with improved mechanical performance

Abstract

New sol–gel functionalized poly-ethylene glycol (PEGM)/SiO2–CaO hybrids were prepared with interpenetrating networks of silica and PEGM through the formation of Si–O–Si bonds. Bioactive and mechanical properties were investigated for a series of hybrids containing varying organic/inorganic ratios and PEG molecular weights. In contrast to the unmodified PEG/SiO2–CaO hybrids, which rapidly dissolved and crumbled, the epoxy modified hybrids exhibited good mechanical properties and bioactivity. The compressive strength and Young's modulus were greater for higher molecular weight PEGM hybrids (PEGM600 compared to PEGM300). Compressive strengths of 138 MPa and 81 MPa were found for the 50 : 50 and 60 : 40 organic/inorganic hybrid samples respectively, which are comparable with cortical bone. Young's modulus values of ∼800 MPa were obtained for the 50 : 50 and 60 : 40 organic/inorganic hybrids. Bioactivity tests were conducted by immersing the hybrids into simulated body fluid and observing the formation of apatite. Apatite formation was observed within 24 hours of immersion. PEGM600 hybrids showed enhanced apatite formation compared to PEGM300 hybrids. Increased apatite formation was observed with increasing organic/inorganic ratio. 70 : 30 and 60 : 40 hybrids exhibited the greatest apatite formation. All PEGM hybrids samples had good cell viability and proliferation. The 60 : 40 PEGM600 hybrids displayed the optimal combination of bioactivity and mechanical strength. The bioactivity of these hybrids, combined with the enhanced mechanical properties, demonstrate that these materials have significant potential for bone regeneration applications.

Graphical abstract: Bioactive organic/inorganic hybrids with improved mechanical performance

Article information

Article type
Paper
Submitted
27 Oct 2014
Accepted
22 Dec 2014
First published
22 Dec 2014
This article is Open Access
Creative Commons BY license

J. Mater. Chem. B, 2015,3, 1379-1390

Author version available

Bioactive organic/inorganic hybrids with improved mechanical performance

A. Li, H. Shen, H. Ren, C. Wang, D. Wu, R. A. Martin and D. Qiu, J. Mater. Chem. B, 2015, 3, 1379 DOI: 10.1039/C4TB01776E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements