Issue 4, 2015

A light-emitting mechanism for organic light-emitting diodes: molecular design for inverted singlet–triplet structure and symmetry-controlled thermally activated delayed fluorescence

Abstract

The concepts of symmetry-controlled thermally activated delayed fluorescence (SC-TADF) and inverted singlet–triplet (iST) structure are proposed. Molecules that can exhibit SC-TADF or have an iST structure can be employed as light-emitting molecules in organic light-emitting diodes. The molecular symmetry plays crucial roles in these concepts since they are based on the selection rules for the electric dipole transition, intersystem crossing, and nonradiative vibronic (electron-vibration) transitions. In addition to the symmetry conditions for the SC-TADF and iST molecules, the molecules should have small diagonal and off-diagonal vibronic coupling constants for suppressing vibrational relaxations and nonradiative vibronic transitions, respectively, and a large transition dipole moment for the fluorescence process. Analyses using the vibronic coupling and transition dipole moment densities are employed to reduce the vibronic coupling constants and to increase the transition dipole moment. The preferable point groups in the development of SC-TADF and iST molecules are discussed on the basis of the ratios of forbidden pairs of irreducible representations. It is found that the existence of the inversion symmetry is preferable for designing SC-TADF and iST molecules. On the basis of these guiding principles, we designed some anthracene and pyrene derivatives as candidate iST molecules. Their electronic structures, spin–orbit couplings, transition dipole moments, and vibronic couplings are discussed.

Graphical abstract: A light-emitting mechanism for organic light-emitting diodes: molecular design for inverted singlet–triplet structure and symmetry-controlled thermally activated delayed fluorescence

Supplementary files

Article information

Article type
Paper
Submitted
15 Oct 2014
Accepted
02 Nov 2014
First published
20 Nov 2014

J. Mater. Chem. C, 2015,3, 870-878

Author version available

A light-emitting mechanism for organic light-emitting diodes: molecular design for inverted singlet–triplet structure and symmetry-controlled thermally activated delayed fluorescence

T. Sato, M. Uejima, K. Tanaka, H. Kaji and C. Adachi, J. Mater. Chem. C, 2015, 3, 870 DOI: 10.1039/C4TC02320J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements