Issue 26, 2016

Labelling of endogenous target protein via N–S acyl transfer-mediated activation of N-sulfanylethylanilide

Abstract

The ligand-dependent incorporation of a reporter molecule (e.g., fluorescence dye or biotin) onto a endogenous target protein has emerged as an important strategy for elucidating protein function using various affinity-based labelling reagents consisting of reporter, ligand and reactive units. Conventional labelling reagents generally use a weakly activated reactive unit, which can result in the non-specific labelling of proteins in a ligand-independent manner. In this context, the activation of a labelling reagent through a targeted protein–ligand interaction could potentially overcome the problems associated with conventional affinity-based labelling reagents. We hypothesized that this type of protein–ligand-interaction-mediated activation could be accomplished using N-sulfanylethylanilide (SEAlide) as the reactive unit in the labelling reagent. Electrophilically unreactive amide-type SEAlide can be activated by its conversion to the corresponding active thioester in the presence of a phosphate salt, which can act as an acid–base catalyst. It has been suggested that protein surfaces consisting of hydrophilic residues such as amino, carboxyl and imidazole groups could function as acid–base catalysts. We therefore envisioned that a SEAlide-based labelling reagent (SEAL) bearing SEAlide as a reactive unit could be activated through the binding of the SEAL with a target protein. Several SEALs were readily prepared in this study using standard 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase protocols. These SEAL systems were subsequently applied to the ligand-dependent labelling of human carbonic anhydrase (hCA) and cyclooxyganese 1. Although we have not yet obtained any direct evidence for the target protein-mediated activation of the SEAlide unit, our results for the reaction of these SEALs with hCA1 or butylamine indirectly support our hypothesis. The SEALs reported in this study represent valuable new entries to the field of affinity-based labelling reagents and are expected to show great utility in protein labelling.

Graphical abstract: Labelling of endogenous target protein via N–S acyl transfer-mediated activation of N-sulfanylethylanilide

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2016
Accepted
31 May 2016
First published
31 May 2016

Org. Biomol. Chem., 2016,14, 6244-6251

Labelling of endogenous target protein via N–S acyl transfer-mediated activation of N-sulfanylethylanilide

M. Denda, T. Morisaki, T. Kohiki, J. Yamamoto, K. Sato, I. Sagawa, T. Inokuma, Y. Sato, A. Yamauchi, A. Shigenaga and A. Otaka, Org. Biomol. Chem., 2016, 14, 6244 DOI: 10.1039/C6OB01014H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements