Issue 66, 2016

Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs)

Abstract

Encapsulated ionic liquids (ENILs) based on carbonaceous submicrocapsules were designed, synthesized and applied to the sorption of NH3 from gas streams. The ENILs were prepared using three different task-specific ILs with adequate properties for NH3 capture: 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate (EtOHmimBF4), choline bis(trifluoromethylsulfonyl)imide (CholineNTf2) and tris(2-hydroxyethyl)methylammonium methylsulfate [(EtOH)3MeNMeSO4]. The ENILs synthesized were analyzed by different techniques to assess their morphology, chemical composition, porous structure and thermal stability. The capture of NH3 was tested in fixed-bed experiments under atmospheric pressure. The influence of the type and load of IL, temperature (30, 45 and 60 °C) and NH3 inlet concentration was analyzed. Desorption of NH3 from the exhausted ENILs was also studied at atmospheric pressure and temperatures in the range of 150 to 200 °C. The ENILs prepared with task-specific ILs were found to be suitable for NH3 capture in the fixed-bed operation. These systems can be a promising alternative to conventional absorption or adsorption due to: (i) high sorption capacity controlled by IL selection, (ii) remarkable mass transfer rate, (iii) low sensitiveness to high temperatures of the gas stream, (iv) fast and complete regeneration of the exhausted ENIL at mild conditions; and (v) recovery of NH3.

Graphical abstract: Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs)

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2016
Accepted
21 Jun 2016
First published
22 Jun 2016
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2016,6, 61650-61660

Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs)

J. Lemus, J. Bedia, C. Moya, N. Alonso-Morales, M. A. Gilarranz, J. Palomar and J. J. Rodriguez, RSC Adv., 2016, 6, 61650 DOI: 10.1039/C6RA11685J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements