Issue 6, 2016

On the origin of high ionic conductivity in Na-doped SrSiO3

Abstract

Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO3 structure to form NaxSr1−xSiO3−0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation of an amorphous phase β-Na2Si2O5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na2Si2O5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.

Graphical abstract: On the origin of high ionic conductivity in Na-doped SrSiO3

Supplementary files

Article information

Article type
Edge Article
Submitted
09 Nov 2015
Accepted
17 Feb 2016
First published
17 Feb 2016
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2016,7, 3667-3675

Author version available

On the origin of high ionic conductivity in Na-doped SrSiO3

P. Chien, Y. Jee, C. Huang, R. Dervişoğlu, I. Hung, Z. Gan, K. Huang and Y. Hu, Chem. Sci., 2016, 7, 3667 DOI: 10.1039/C5SC04270D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements