Issue 6, 2017

Li2TiSiO5: a low potential and large capacity Ti-based anode material for Li-ion batteries

Abstract

To date, anode materials for lithium-ion batteries (LIBs) have been dominated by carbonaceous materials, which have a low intercalation potential but easily allow lithium dendrites to form under high current density, leading to a safety risk. The other anode material, the “zero-strain” spinel-structured Li4Ti5O12, with a ∼1.5 V vs. Li+/Li intercalation potential, exhibits excellent cycling stability and avoids the issues of dendrite growth and Li plating. The low capacity and high voltage of Li4Ti5O12, however, result in low energy density. Herein, we report a new and environmentally friendly anode material, Li2TiSiO5, which delivers a capacity as high as 308 mA h g−1, with a working potential of 0.28 V vs. Li+/Li, and excellent cycling stability. The lithium-storage mechanism of this material is also proposed based on the combination of in situ synchrotron X-ray diffraction, neutron powder diffraction with Fourier density mapping, ex situ X-ray absorption near edge structure analysis, ex situ transmission electron microscopy, and density-functional theory calculations with the projector-augmented-wave formalism. The lithium-storage mechanism of this material is shown to involve a two-electron (Ti4+/Ti2+ redox) conversion reaction between TiO and Li4SiO4.

Graphical abstract: Li2TiSiO5: a low potential and large capacity Ti-based anode material for Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
18 Mar 2017
Accepted
03 May 2017
First published
03 May 2017

Energy Environ. Sci., 2017,10, 1456-1464

Li2TiSiO5: a low potential and large capacity Ti-based anode material for Li-ion batteries

J. Liu, W. K. Pang, T. Zhou, L. Chen, Y. Wang, V. K. Peterson, Z. Yang, Z. Guo and Y. Xia, Energy Environ. Sci., 2017, 10, 1456 DOI: 10.1039/C7EE00763A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements