Issue 5, 2017

A microfluidic device for characterizing nuclear deformations

Abstract

Cell nuclei experience and respond to a wide range of forces, both in vivo and in vitro. In order to characterize the nuclear response to physical stress, we developed a microfluidic chip and used it to apply mechanical stress to live cells and measure their nuclear deformability. The device design is optimized for the detection of both nucleus and cytoplasm, which can then be conveniently quantified using a custom-written Matlab program. We measured nuclear sizes and strains of embryonic stem cells, for which we observed negative Poisson ratios in the nuclei. In addition, we were able to detect changes in the nuclear response after treatment with actin depolymerizing and chromatin decondensing agents. Finally, we showed that the device can be used for biologically relevant high-resolution confocal imaging of cells under compression. Thus, the device presented here allows for accurate physical phenotyping at high throughput and has the potential to be applied to a range of cell types.

Graphical abstract: A microfluidic device for characterizing nuclear deformations

Article information

Article type
Paper
Submitted
21 Oct 2016
Accepted
13 Jan 2017
First published
13 Jan 2017

Lab Chip, 2017,17, 805-813

A microfluidic device for characterizing nuclear deformations

A. C. Hodgson, C. M. Verstreken, C. L. Fisher, U. F. Keyser, S. Pagliara and K. J. Chalut, Lab Chip, 2017, 17, 805 DOI: 10.1039/C6LC01308B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements