Issue 13, 2017

Probing the structure and in silico stability of cargo loaded DNA icosahedra using MD simulations

Abstract

Platonic solids such as polyhedra based on DNA have been deployed for multifarious applications such as RNAi delivery, biological targeting and bioimaging. All of these applications hinge on the capability of DNA polyhedra for molecular display with high spatial precision. Therefore high resolution structural models of such polyhedra are critical to widen their applications in both materials and biology. Here, we present an atomistic model of a well-characterized DNA icosahedron, with demonstrated versatile functionalities in biological systems. We study the structure and dynamics of this DNA icosahedron using fully atomistic molecular dynamics (MD) simulation in explicit water and ions. The major modes of internal motion have been identified using principal component analysis. We provide a quantitative estimate of the radius of gyration (Rg), solvent accessible surface area (SASA) and volume of the icosahedron which is essential to estimate its maximal cargo carrying capacity. Importantly, our simulation of gold nanoparticles (AuNPs) encapsulated within DNA icosahedra revealed enhanced stability of the AuNP loaded DNA icosahedra compared to empty icosahedra. This is consistent with the experimental results that show high yields of cargo-encapsulated DNA icosahedra that have led to its diverse applications for precision targeting. These studies reveal that the stabilizing interactions between the cargo and the DNA scaffold powerfully position DNA polyhedra as targetable nanocapsules for payload delivery. These insights can be exploited for precise molecular display for diverse biological applications.

Graphical abstract: Probing the structure and in silico stability of cargo loaded DNA icosahedra using MD simulations

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2016
Accepted
26 Feb 2017
First published
28 Feb 2017

Nanoscale, 2017,9, 4467-4477

Probing the structure and in silico stability of cargo loaded DNA icosahedra using MD simulations

H. Joshi, D. Bhatia, Y. Krishnan and P. K. Maiti, Nanoscale, 2017, 9, 4467 DOI: 10.1039/C6NR08036G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements