Issue 44, 2017

Strain induced quantum spin Hall insulator in monolayer β-BiSb from first-principles study

Abstract

Topological insulator (TI) is a peculiar phase of matter exhibiting excellent quantum transport properties with potential applications in lower-power-consuming electronic devices. Searching for inversion-asymmetric quantum spin Hall (QSH) insulators persists as an effect for realizing new topological phenomena. Using first-principles density functional theory calculations, we investigate the geometry, dynamic stability, and electronic structures of monolayer β-BiSb. We find that it presents QSH state under biaxial tensile strain of 14%. The nontrivial topological situation in the strained system is confirmed by the identified band inversion, Z2 topological invariant (Z2 = 1), and an explicit presence of the topological edge states. Owning to the asymmetric structure, remarkable Rashba spin splitting is produced in both the valence and conduction bands of the strained system. These results provide an intriguing platform for applications of monolayer β-BiSb in future alternative quantum Hall spintronic devices.

Graphical abstract: Strain induced quantum spin Hall insulator in monolayer β-BiSb from first-principles study

Article information

Article type
Paper
Submitted
12 Apr 2017
Accepted
16 May 2017
First published
25 May 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 27816-27822

Strain induced quantum spin Hall insulator in monolayer β-BiSb from first-principles study

W. Yu, C. Niu, Z. Zhu, X. Cai, L. Zhang, S. Bai, R. Zhao and Y. Jia, RSC Adv., 2017, 7, 27816 DOI: 10.1039/C7RA04153E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements