Issue 89, 2017

Engineering a novel biosynthetic pathway in Escherichia coli for the production of caffeine

Abstract

Caffeine (Cf, 1,3,7-trimethylxanthine), a major secondary metabolite of many higher plants, is widely used in popular non-alcoholic beverages, and in the pharmaceutical and health industries. Currently, this valuable chemical is mainly manufactured by chemical synthesis. In this study, we developed a novel approach for de novo caffeine production in metabolically engineered Escherichia coli. Xanthine-to-caffeine conversion was first achieved by the expression of a plant-derived gene encoding tea caffeine synthase (TCS1). Caffeine accumulation was then increased using two metabolic strategies: higher-level expression of the target enzymes, and enhancement of xanthine and S-adenosyl-L-methionine biosynthesis. The final strain (BL21/pRSF-eCS1-SAM2-vgb-eGUD1) produced up to 21.46 ± 1.03 mg L−1 caffeine from 20 g L−1 of glucose in shake flask culture, yielding caffeine up to 2.96 mg g−1 glucose, which represents the highest titer of caffeine produced by fermentation reported to date. This novel microbial conversion also represents an innovative approach to produce value-added methylxanthine chemicals from cheap carbon sources.

Graphical abstract: Engineering a novel biosynthetic pathway in Escherichia coli for the production of caffeine

Article information

Article type
Paper
Submitted
05 Oct 2017
Accepted
08 Dec 2017
First published
15 Dec 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 56382-56389

Engineering a novel biosynthetic pathway in Escherichia coli for the production of caffeine

M. Li, Y. Sun, S. Pan, W. Deng, O. Yu and Z. Zhang, RSC Adv., 2017, 7, 56382 DOI: 10.1039/C7RA10986E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements