Issue 35, 2018

Hydrogen adsorption and desorption from Cu(111) and Cu(211)

Abstract

We present a combined experimental–theoretical study on structural and coverage dependences of the adsorption and desorption of molecular hydrogen on atomically flat Cu(111) and highly stepped Cu(211) surfaces. For molecules with identical incident energy from supersonic molecular beams, we find a reduced dissociative sticking probability for the stepped surface compared to Cu(111). DFT calculations of activation barriers to dissociation for the clean and partially precovered surfaces, as well as quantitative analysis of TPD spectra, support that the A-type step of the (211) surface causes an upward shift in activation barriers to dissociation and lowering of the desorption barrier. The new data allow us to determine low sticking probabilities at conditions where King and Wells measurements fail to determine the reactivity. They are also fully consistent with the unexpected observation that monoatomic steps on a surface lower the reactivity toward the dissociation of a diatomic molecule.

Graphical abstract: Hydrogen adsorption and desorption from Cu(111) and Cu(211)

Article information

Article type
Paper
Submitted
28 May 2018
Accepted
02 Aug 2018
First published
02 Aug 2018

Phys. Chem. Chem. Phys., 2018,20, 22477-22488

Hydrogen adsorption and desorption from Cu(111) and Cu(211)

K. Cao, G. Füchsel, A. W. Kleyn and L. B. F. Juurlink, Phys. Chem. Chem. Phys., 2018, 20, 22477 DOI: 10.1039/C8CP03386B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements