Issue 6, 2018

Nanoconfined phase change materials for thermal energy applications

Abstract

Phase change materials (PCMs) have been extensively characterized as constant temperature latent heat thermal energy storage (TES) materials. Nevertheless, the widespread utilization of PCMs is limited due to the flow of liquid PCMs during melting, phase separation, supercooling and low heat transfer rate. In order to overcome these inherent problems and to improve thermo-physical properties, the confinement of PCMs at the nanoscale has been identified as a versatile strategy, which ensures the encapsulation of PCMs in much smaller nano-containers. Such strategies including core–shell, longitudinal, interfacial and porous confinement have been widely presented in recent years to efficiently encapsulate PCMs in nanospaces and are presenting attractive ways to enhance thermal performance. This review summarizes the recent advancement and critical issues of nanoconfinement technologies of PCMs from the point of view of material design. In addition, the potential applications of nanoconfined PCMs in diverse fields, including energy conversion and storage, thermal rectification and temperature controlled drug delivery systems, are presented in detail. Finally, the major drawbacks associated with nanoconfined PCMs and their prospective solutions are also provided.

Graphical abstract: Nanoconfined phase change materials for thermal energy applications

Article information

Article type
Review Article
Submitted
20 Dec 2017
Accepted
26 Mar 2018
First published
27 Mar 2018

Energy Environ. Sci., 2018,11, 1392-1424

Nanoconfined phase change materials for thermal energy applications

W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood and R. Zou, Energy Environ. Sci., 2018, 11, 1392 DOI: 10.1039/C7EE03587J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements