Issue 29, 2018

PdO/PdO2 functionalized ZnO : Pd films for lower operating temperature H2 gas sensing

Abstract

Noble metals and their oxide nano-clusters are considered to be the most promising candidates for fabricating advanced H2 gas sensors. Through this work, we propose a novel strategy to grow and modulate the density of PdO/PdO2 nanoparticles uniformly on nanostructured Pd-doped ZnO (ZnO : Pd) films by a one-step solution approach followed by thermal annealing at 650 °C, and thus to detect ppm-level H2 gas in a selective manner. The gas sensing properties of such hybridized materials showed that the PdO-functionalized ZnO samples offer significantly improved H2 gas sensing properties in an operating temperature range of 25–200 °C. The deposition of ZnO : Pd films via a simple synthesis from chemical solutions (SCS) approach with an aqueous bath (at relatively low temperatures, <95 °C) is reported. Furthermore, the functionalization of palladium oxide nanoclusters by a simple but highly effective approach on ZnO : Pd film surfaces was performed and is reported here for the first time. The morphological, structural, vibrational, optical, chemical, and electronic properties were studied in detail and the mixed phases of palladium oxide nanoclusters on the ZnO surface were found. Sensor studies of the ZnO : Pd samples (in the range of 25–350 °C operating temperature) showed good selectivity to H2 gas, especially in the range of higher temperatures (>150 °C, up to 350 °C); however, the PdO/PdO2 mixed phases of the nanocluster-modified surface ZnO : Pd films showed a much better selectivity to H2 gas, even at a lower operating temperature, in the range of 25–150 °C. For such PdO-functionalized ZnO : Pd films, even at room temperature, a gas response of ∼12.7 to 1000 ppm of H2 gas was obtained, without response to any other reducing gases or tested vapors. The large recovery time of the samples at room temperatures (>500 s) can be drastically reduced by applying higher bias voltages. Furthermore, we propose and discuss the gas sensing mechanism for these structures in detail. Our study demonstrates that surface functionalization with PdO/PdO2 mixed phase nanoclusters–nanoparticles (NPs) is much more effective than only the Pd doping of nanostructured ZnO films for selective sensing applications. This approach will pave a new way for the controlled functionalization of PdO/PdO2 nanoclusters on ZnO : Pd surfaces to the exact detection of highly explosive H2 gas under various atmospheres by using solid state gas sensors.

Graphical abstract: PdO/PdO2 functionalized ZnO : Pd films for lower operating temperature H2 gas sensing

Supplementary files

Article information

Article type
Paper
Submitted
20 Apr 2018
Accepted
21 Jun 2018
First published
25 Jun 2018

Nanoscale, 2018,10, 14107-14127

PdO/PdO2 functionalized ZnO : Pd films for lower operating temperature H2 gas sensing

O. Lupan, V. Postica, M. Hoppe, N. Wolff, O. Polonskyi, T. Pauporté, B. Viana, O. Majérus, L. Kienle, F. Faupel and R. Adelung, Nanoscale, 2018, 10, 14107 DOI: 10.1039/C8NR03260B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements