Issue 24, 2019

Significance of triple torsional correlations in proteins

Abstract

The free energy landscape (FEL) of a given complex molecular system is fundamentally the joint probability density of its many comprising degrees of freedom (DOFs). Computation of a complete FEL at atomistic scale is unfortunately intractable for a typical biomolecular system. The challenge of entropy calculation comes from various correlations among different DOFs. The common strategy to treat such complexity is expansion of the full correlation into various orders of local correlations. In reality, expansion is usually cut off at the second order (i.e. pairwise interactions) for protein torsional correlations without reliable estimation of the resulting error. Here, we estimated the mutual information of different torsion sets and found that triple correlations were significant for both local/distant residue pairs and consecutive backbone torsional segments. As expected, the third order approximations were found to be consistently better than the second order approximations. These findings were true for all analyzed proteins with different folds, were independent of the two different force fields utilized to generate trajectory sets, and were therefore likely to be of general importance for proteins. Additionally, binning strategies are of universal importance for numerical computation of correlations, we here provided a detailed comparison between equal-width and equal-sample binning for different bin numbers and demonstrated the impact of binning strategies on variances and biases of calculated mutual information. Our observation suggested that caution should be taken when quantitative comparison of correlations were intended between different studies with different binning strategies.

Graphical abstract: Significance of triple torsional correlations in proteins

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2019
Accepted
21 Apr 2019
First published
07 May 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 13949-13958

Significance of triple torsional correlations in proteins

S. Long, J. Wang and P. Tian, RSC Adv., 2019, 9, 13949 DOI: 10.1039/C9RA02191D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements