Issue 15, 2019

Block copolymer microparticles comprising inverse bicontinuous phases prepared via polymerization-induced self-assembly

Abstract

Traditionally, post-polymerization processing routes have been used to obtain a wide range of block copolymer morphologies. However, this self-assembly approach is normally performed at rather low copolymer concentration, which precludes many potential applications. Herein, we report a facile method for the preparation of block copolymer particles exhibiting complex internal morphology via polymerization-induced self-assembly (PISA). More specifically, a series of diblock copolymers were synthesized by reversible addition–fragmentation chain transfer (RAFT) alternating copolymerization of styrene (St) with N-phenylmaleimide (NMI) using a poly(N,N-dimethylacrylamide) (PDMAC) stabilizer as a soluble precursor. Conducting such PISA syntheses in a 50 : 50 w/w ethanol/methyl ethyl ketone (MEK) mixture leads directly to the formation of micrometer-sized PDMAC-P(St-alt-NMI) diblock copolymer particles at 20% w/w solids. Adjusting the degree of polymerization (DP) of the core-forming P(St-alt-NMI) block to target highly asymmetric copolymer compositions provides convenient access to an inverse bicontinuous phase. TEM studies of intermediate structures provide useful insights regarding the mechanism of formation of this phase. SEM studies indicate that the final copolymer particles comprise perforated surface layers and possess nanostructured interiors. In addition, control experiments using 1,4-dioxane suggest that the high chain mobility conferred by the MEK co-solvent is essential for the formation of such inverse bicontinuous structures. One-pot PISA formulations are reproducible and involve only cheap, commercially available starting materials, so they should be readily amenable to scale-up. This augurs well for the potential use of such nanostructured micrometer-sized particles as new organic opacifiers for paints and coatings.

Graphical abstract: Block copolymer microparticles comprising inverse bicontinuous phases prepared via polymerization-induced self-assembly

Supplementary files

Article information

Article type
Edge Article
Submitted
18 Jan 2019
Accepted
11 Mar 2019
First published
11 Mar 2019
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2019,10, 4200-4208

Block copolymer microparticles comprising inverse bicontinuous phases prepared via polymerization-induced self-assembly

P. Yang, Y. Ning, T. J. Neal, E. R. Jones, B. R. Parker and S. P. Armes, Chem. Sci., 2019, 10, 4200 DOI: 10.1039/C9SC00303G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements