Issue 17, 2020

A three-dimensional discriminant analysis approach for hyperspectral images

Abstract

Raman hyperspectral imaging is a powerful technique that provides both chemical and spatial information of a sample matrix being studied. The generated data are composed of three-dimensional (3D) arrays containing the spatial information across the x- and y-axis, and the spectral information in the z-axis. Unfolding procedures are commonly employed to analyze this type of data in a multivariate fashion, where the spatial dimension is reshaped and the spectral data fits into a two-dimensional (2D) structure and, thereafter, common first-order chemometric algorithms are applied to process the data. There are only a few algorithms capable of working with the full 3D array. Herein, we propose new algorithms for 3D discriminant analysis of hyperspectral images based on a three-dimensional principal component analysis linear discriminant analysis (3D-PCA-LDA) and a three-dimensional discriminant analysis quadratic discriminant analysis (3D-PCA-QDA) approach. The analysis was performed in order to discriminate simulated and real-world data, comprising benign controls and ovarian cancer samples based on Raman hyperspectral imaging, in which 3D-PCA-LDA and 3D-PCA-QDA achieved far superior performance than classical algorithms using unfolding procedures (PCA-LDA, PCA-QDA, partial lest squares discriminant analysis [PLS-DA], and support vector machines [SVM]), where the classification accuracies improved from 66% to 83% (simulated data) and from 50% to 100% (real-world dataset) after employing the 3D techniques. 3D-PCA-LDA and 3D-PCA-QDA are new approaches for discriminant analysis of hyperspectral images multisets to provide faster and superior classification performance than traditional techniques.

Graphical abstract: A three-dimensional discriminant analysis approach for hyperspectral images

Article information

Article type
Paper
Submitted
03 Jul 2020
Accepted
10 Jul 2020
First published
13 Jul 2020

Analyst, 2020,145, 5915-5924

A three-dimensional discriminant analysis approach for hyperspectral images

C. L. M. Morais, P. Giamougiannis, R. Grabowska, N. J. Wood, P. L. Martin-Hirsch and F. L. Martin, Analyst, 2020, 145, 5915 DOI: 10.1039/D0AN01328E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements