Issue 8, 2020

Colorimetric absorbance mapping and quantitation on paper-based analytical devices

Abstract

A wide range of microfluidic paper-based analytical devices (μPADs) have been developed in the last decade. Despite this, the quality of colorimetric analysis has not substantially improved as the data is vulnerable to heterogeneous color distribution (e.g., coffee ring effects), non-uniform shapes of colored detection area, and noise from the underlying paper structure. These limitations are here addressed by a colorimetric method to quantify freely discharged dye on paper substrate, without the need for a defined channel or hydrophobic barrier. For accurate quantification, colorimetric absorbance values are calculated for each pixel based on the recorded RGB values and noise from the paper structure eliminated, to extract accurate absorbance information at the pixel level. Total analyte quantity is then calculated through the conversion of absorbance values into quantity values for each pixel followed by integration across the entire image. The resulting quantity is shown to be independent of the shape of the applied colored dye spot, with a cross, circle or rod shape all giving the same quantity information. The approach is applied to a capillary-based potassium-selective sensor, where the sample solution is loaded with the dye thioflavin T (ThT) obtained by quantitative exchange with K+ in a sensing capillary, which is discharged onto a bare paper substrate without any channels. The resulting dye quantity is successfully obtained by flatbed scanner and smartphone. The successful automated computation of colorimetric data on μPADs will help realize simpler paper-based assay and reaction systems that should be more applicable to addressing real world analytical problems.

Graphical abstract: Colorimetric absorbance mapping and quantitation on paper-based analytical devices

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2020
Accepted
10 Mar 2020
First published
10 Mar 2020
This article is Open Access
Creative Commons BY-NC license

Lab Chip, 2020,20, 1441-1448

Colorimetric absorbance mapping and quantitation on paper-based analytical devices

Y. Soda, K. J. Robinson, T. J. Cherubini and E. Bakker, Lab Chip, 2020, 20, 1441 DOI: 10.1039/D0LC00028K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements