Issue 10, 2020

A highly efficient fog harvester of electrospun permanent superhydrophobic–hydrophilic polymer nanocomposite fiber mats

Abstract

To address the worldwide issue of water scarcity, which is threatening our sustainable economic development and ecological security, an efficient water-collecting surface with fast-capturing capability and easy drainage is essential. Inspired by the fog-harvesting capability of Stenocara beetles in the Namib Desert, this study presents an easy method for fabricating flexible, permanent, electrospun superhydrophobic–hydrophilic polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) nanocomposite fiber mats for atmospheric fog water harvesting. This combination of a hydrophobic PAN domain and hydrophilic nanomaterials causes water to condense on the hydrophilic micro and nanoparticles and roll off the hydrophobic nanofibers. By adjusting the proportion of micro and nanomaterials, we can tune the fog water harvesting efficiency. The superhydrophobic–hydrophilic nanocomposite fibers are fabricated with various proportions of titanium dioxide (TiO2) nanoparticles and aluminum (Al) microparticles using the electrospinning technique followed by stabilization and carbonization to remove all non-carbonaceous materials from the fiber structures. The fiber morphology, surface hydrophobicity, crystal structure, and fog-harvesting performance of the nanocomposite fibers were investigated. A water contact angle of 154.8° was achieved with the addition of a 10% inclusion of combined micro- and nanoparticles. The experimental tests of these nanocomposites demonstrated the feasibility of the freshwater production with a daily water productivity of more than 1.49 liter m−2 of the nanocomposites. It is estimated that the material cost of making such nanocomposites to supply minimum daily water consumption for a household with 2 members (i.e., 6 liters) is only $4.96 (USD). These nanocomposites are cheap and affordable, and require no additional input of energy, and are especially suitable for clean water production in arid areas. This work offers a very feasible and novel tool to achieve the mass production of water-harvesting materials.

Graphical abstract: A highly efficient fog harvester of electrospun permanent superhydrophobic–hydrophilic polymer nanocomposite fiber mats

Article information

Article type
Paper
Submitted
29 Jun 2020
Accepted
20 Aug 2020
First published
26 Aug 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2020,2, 4627-4638

A highly efficient fog harvester of electrospun permanent superhydrophobic–hydrophilic polymer nanocomposite fiber mats

Md. N. Uddin, F. J. Desai, M. M. Rahman and R. Asmatulu, Nanoscale Adv., 2020, 2, 4627 DOI: 10.1039/D0NA00529K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements