Issue 15, 2020

Giant pressure sensitivity in piezo/ferro-electric ceramics

Abstract

We report the fabrication of single-phase polycrystalline Pb0.85Bi0.10(Zr0.52Ti0.48)O3 (PBiZT) ceramic which shows large polarization, i.e., ∼40 μC cm−2 and piezoelectric coefficients ∼130 pC N−1 and giant linear change in capacitive reactance and dielectric properties with increasing and decreasing pressure in the range of 1 kHz to 5 MHz. Nearly 70% change in dielectric constant and 56% change in capacitive reactance were obtained in the pressure range of 20–200 MPa, which makes it suitable for applications as a capacitive pressure sensor/gauge. The sensitivity of the device is calculated as 0.66 MPa−1 and 18.2 MPa−1 at 1 MHz and 5 MHz, respectively, which is the highest ever reported value so far for any bulk polycrystalline ceramic. The compressive stress of the device was tested according to the standard test method as a function of linear and volumetric strain, which yields the Young's modulus, Bulk modulus, and Poisson's ratio of the device. These values were further utilized to calculate actual stress in the sample and energy density using ANSYS software, which indicates at least four orders smaller pressure in the sample compared to the applied pressure.

Graphical abstract: Giant pressure sensitivity in piezo/ferro-electric ceramics

Article information

Article type
Paper
Submitted
16 Jan 2020
Accepted
26 Feb 2020
First published
03 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 9140-9145

Giant pressure sensitivity in piezo/ferro-electric ceramics

V. N. Thakur, B. P. Singh, S. Yadav and A. Kumar, RSC Adv., 2020, 10, 9140 DOI: 10.1039/D0RA00484G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements