Issue 32, 2020

Enhanced electrochemical performance of MoS2/graphene nanosheet nanocomposites

Abstract

Molybdenum disulfide (MoS2) is attractive as an anode material for next-generation batteries, because of its layered structure being favorable for the insertion/deinsertion of Li+ ions, and its fairly high theoretical capacity. However, since the MoS2 anode material has exhibited disadvantages, such as low electrical conductivity and poor cycling stability, to improve the electrochemical performance of MoS2 in this study, a nanocomposite structure consisting of MoS2 and GNS (MoS2/GNS) as an anode for LIBs was prepared, by controlling the weight ratios of MoS2/GNS. The X-ray diffraction patterns and electron microscopic analysis showed that the nanocomposite electrode structure consisted of well-formed MoS2 nanoparticles and GNS. Compared to MoS2-only, the MoS2/GNS composites exhibited high retention and improved capacity at high current densities. In particular, among these nanocomposite samples, MoS2/GNS(8 : 2) with an appropriate portion of GNS exhibited the best LIB performance, due to the lowest interfacial resistance and highest Li-ion diffusivity.

Graphical abstract: Enhanced electrochemical performance of MoS2/graphene nanosheet nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
20 Apr 2020
Accepted
26 Apr 2020
First published
19 May 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 19077-19082

Enhanced electrochemical performance of MoS2/graphene nanosheet nanocomposites

J. Choi, M. Kim, S. Moon, H. Kim, Y. Kim and K. Park, RSC Adv., 2020, 10, 19077 DOI: 10.1039/D0RA03539D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements