Issue 27, 2021, Issue in Progress

Enhanced thermoelectric performance of graphene based nanocomposite coated self-powered wearable e-textiles for energy harvesting from human body heat

Abstract

The demand for highly flexible and self-powered wearable textile devices has increased in recent years. Graphene coated textile-based wearable devices have been used for energy harvesting and storage due to their outstanding mechanical, electrical and electronic properties. However, the use of metal based nanocomposites is limited in textiles, due to their poor bending, fixation, and binding on textiles. We present here reduced graphene oxide (rGO) as an n-type and conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a p-type material for a wearable thermoelectric nanogenerator (TEG) using a (pad–dry–cure) technique. We developed a reduced graphene oxide (rGO) coated textile-based wearable TEG for energy harvesting from low-grade human body heat. The conductive polymer (PEDOT:PSS) and (rGO) nanocomposite were coated using a layer by layer approach. The resultant fabric showed higher weight pickup of 60–80%. The developed textile based TEG device showed an enhanced Seebeck coefficient of (25–150 μV K−1), and a power factor of (2.5–60 μW m−1 K−1). The developed TE device showed a higher potential to convert the low-grade body heat into electrical energy, between the human body temperature of (36.5 °C) and an external environment of (20.0 ± 5 °C) with a temperature difference of (2.5–16.5 °C). The wearable textile-based TEG is capable of producing an open circuit output voltage of 12.5–119.5 mV at an ambient fixed temperature of (20 °C). The rGO coated textile fabric also showed reduced electrical sheet resistance by increasing the number of dyeing cycles (10) and increased with the number of (20) washing cycles. The developed reduced graphene oxide (rGO) coated electrodes showed a sheet resistance of 185–45 kΩ and (15 kΩ) for PEDOT:PSS–rGO nanocomposites respectively. Furthermore, the mechanical performance of the as coated textile fabric was enhanced from (20–80 mPa) with increasing number of padding cycles. The thermoelectric performance was significantly improved, without influencing the breath-ability and comfort properties of the resultant fabric. This study presents a promising approach for the fabrication of PEDOT:PSS/rGO nano-hybrids for textile-based wearable thermoelectric generators (TEGs) for energy harvesting from low-grade body heat.

Graphical abstract: Enhanced thermoelectric performance of graphene based nanocomposite coated self-powered wearable e-textiles for energy harvesting from human body heat

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2020
Accepted
22 Apr 2021
First published
06 May 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 16675-16687

Enhanced thermoelectric performance of graphene based nanocomposite coated self-powered wearable e-textiles for energy harvesting from human body heat

N. A. Khoso, X. Jiao, X. GuangYu, S. Tian and J. Wang, RSC Adv., 2021, 11, 16675 DOI: 10.1039/D0RA10783B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements