Process intensification of element extraction using centrifugal contactors in the nuclear fuel cycle†
Abstract
This review focuses on consolidating solvent extraction performed in the process intensification equipment known as Centrifugal Contactors (CCs), implemented in Spent Nuclear Fuel (SNF) reprocessing and radioactive waste processing. Recovery of valuable actinides is important from sustainability perspectives as it is a source of metals of technological interest from SNF, specifically the recovery of fissile and fertile material, and can also be employed in the processing of Waste Electrical and Electronic Equipment (WEEE). Solvent extraction (also referred to as liquid–liquid extraction, or aqueous separation), is employed in the separation of f-block elements and fission products in SNF. The sequential isolation using different flowsheets has been performed on a range of scales using CCs. However, solids, either present in the feed solution or formed in situ, are always cited as a concern for the operability of CCs, and their extraction efficiencies. This review quantifies the unexpected solid arisings and accumulation during operation in the presence and absence of highly radioactive isotopes from bench to plant scale. The review concludes with techniques implemented for the removal of solids from CCs.