Issue 17, 2022

Analysis of silica fouling on nonwetting surfaces

Abstract

Ground water sources used as coolant fluids in a variety of thermal systems such as heat exchangers and power plant condensers contain silica particles that accrete on heat transfer surfaces over time leading to reduction in thermal performance, a problem that is particularly exacerbated with temperature. Nonwetting superhydrophobic, lubricant-infused, and a new class of solid-infused surfaces introduced in this work are candidates for fouling mitigation, by virtue of their water repellency, but little is known about fouling of silica on the surfaces, especially under dynamic flow conditions and as a function of temperature. This article presents, for the first time, a systematic study of dynamic flow fouling of silica on nonwetting surfaces vis-à-vis conventional copper surface over a temperature range 20–50 °C. The mechanism of silica aggregate formation and its adherence to the different surfaces is elucidated by scanning electron microscope (SEM) imaging. Sigmoidal growth model is used to describe the time evolution of fouling thermal resistance and an Arrhenius model is presented for the temperature-dependent increase in the asymptotic fouling resistance on nonwetting and conventional surfaces alike. Lubricant-infused and solid-infused surfaces are shown to reduce fouling thermal resistance by up to 25% and 13%, respectively, compared to a conventional surface, whereas superhydrophobic surfaces lose their non-wettability under flow conditions, leading to an adverse increase in the fouling resistance by up to 13%. Considering the possible lubricant depletion in lubricant-infused surfaces over prolonged exposure to a flowing fluid, solid-infused surfaces present a robust alternative.

Graphical abstract: Analysis of silica fouling on nonwetting surfaces

Article information

Article type
Paper
Submitted
02 Feb 2022
Accepted
28 Mar 2022
First published
30 Mar 2022

Soft Matter, 2022,18, 3403-3411

Author version available

Analysis of silica fouling on nonwetting surfaces

S. Hatte and R. Pitchumani, Soft Matter, 2022, 18, 3403 DOI: 10.1039/D2SM00165A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements