Issue 43, 2023

Data-driven deep generative design of stable spintronic materials

Abstract

Discovering novel magnetic materials is essential for advancing the spintronic technology with significant applications in data communication, data storage, quantum computing, etc. While density functional theory (DFT) has been widely used for designing materials, its high computational demand for estimating the magnetic ground states of even a single material limits its ability to explore the vast chemical design space to find the right materials for spintronic applications. In this work, we developed a computational framework combining generative adversarial networks (GANs), machine learning (ML) classifiers, and DFT for de novo magnetic material discovery. We used the CubicGAN generative crystal structure design model for creating new ternary cubic structures. Machine learning classifiers were developed with around 90% accuracy to screen candidate ternary magnetic materials, which were then subjected to DFT based stability validation. Our calculations discovered and confirmed that Na6TcO6, K6TcO6, and BaCuF6 are stable ferromagnetic compounds, while Rb6IrO6 is a stable antiferromagnetic material. All these materials have zero energy above hull. Moreover, Na6TcO6 and BaCuF6 are found to be half metals that are highly favorable for spintronic applications. Due to the structural differences, the A6MO6 materials have a higher thermal capacity (Cv) compared to BaCuF6. At 300 K temperature, the Cv of the A6MO6 materials is around 1100 J K−1 mol−1 and that of BaCuF6 is about 176 J K−1 mol−1. This work demonstrates the promising potential of deep generative design for discovering novel functional materials.

Graphical abstract: Data-driven deep generative design of stable spintronic materials

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2023
Accepted
15 Sep 2023
First published
19 Sep 2023

CrystEngComm, 2023,25, 6017-6029

Author version available

Data-driven deep generative design of stable spintronic materials

E. M. D. Siriwardane, Y. Zhao and J. Hu, CrystEngComm, 2023, 25, 6017 DOI: 10.1039/D3CE00765K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements