Issue 3, 2023

Collection, nucleic acid release, amplification, and visualization platform for rapid field detection of rice false smut

Abstract

Rice false smut (RFS) has brought serious food safety problems to the world. Reliable diagnostic tools are needed for the field detection of RFS. Traditional polymerase chain reaction (PCR) is inefficient due to sample transport and preparation, which cannot adapt to the needs of field detection. Herein, we successfully developed a simple, portable microfluidic test platform to rapidly detect RFS. To simplify the operation, we integrated spore purification, nucleic acid release, and amplification into one chip. A micro air pump was used to separate the spores from the impurities and complete the collection of the spores through the airflow. We rapidly lysed spores and released nucleic acids by the benzyl chloride method. The loop-mediated isothermal amplification (LAMP) products could be combined with SYBR Green I to observe the results visually. On-chip sample tests showed that the spore collection efficiency was approximately 78%. By providing on-chip detection results, the chip had 100% specificity and a detection limit of 100 copies/reaction. At the same time, the stability (CV < 5%) and quantitative ability (R2 = 0.989) of the chip were also guaranteed. Through the visual detection of large samples, the on-chip detection results were highly concordant with the classical RT-PCR detection results, and the detection timeliness was greatly enhanced. Compared with RT-PCR, the single-sample detection time was shortened by about twenty minutes. The proposed micro-diagnostic tool did not require any large end-point detection instruments and avoided the complicated operation of nucleic acid extraction. As a result, in the future, our microfluidic chip could be used for rapid and real-time monitoring and early warning of rice false smut spores in rice paddies.

Graphical abstract: Collection, nucleic acid release, amplification, and visualization platform for rapid field detection of rice false smut

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2022
Accepted
06 Jan 2023
First published
17 Jan 2023

Lab Chip, 2023,23, 542-552

Collection, nucleic acid release, amplification, and visualization platform for rapid field detection of rice false smut

Z. Sun, J. Qi, Y. Shen, N. Yang, S. Liu, A. Wang, C. Wang and J. Tang, Lab Chip, 2023, 23, 542 DOI: 10.1039/D2LC01166B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements