High throughput spectrally resolved super-resolution fluorescence microscopy with improved photon usage†
Abstract
Single-molecule localization microscopy (SMLM), a type of super-resolution fluorescence microscopy, has become a strong technique in the toolbox of chemists, biologists, physicists, and engineers in recent years for its unique ability to resolve characteristic features at the nanoscopic level. It drastically improves the resolution of optical microscopes beyond the diffraction limit, with which previously unresolvable structures can now be studied. Spectrally resolved super-resolution fluorescence microscopy via multiplexing of different fluorophores is one of the greatest advancements among SMLM techniques. However, current spectrally resolved SMLM (SR-SMLM) methodologies present low spatial resolution due to loss of photons, low throughput due to spectral interferences, or require complex optical systems. Here, we overcome these drawbacks by developing a SR-SMLM methodology using a color glass filter. It enables high throughput and improved photon usage for hyperspectral imaging at the nanoscopic level. Our methodology can readily distinguish fluorophores of close spectral emission and achieves sub-10 nm localization and sub-5 nm spectral precisions.