Issue 6, 2024

A deeper insight into the evaluation of water-in-oil amicroemulsion templated samarium sulfide nanospheres: exploring its role in pickering emulsion formulation for photocatalytic dye degradation and synthesis of PANI@Sm2S3 nanocomposites

Abstract

This study examines the effectiveness of W/O microemulsion-mediated Sm2S3 nanospheres in pickering emulsion-based crystal violet (CV) dye degradation and PANI@Sm2S3 nanocomposite synthesis. The evaluation of nanospheres inside the core of reverse micelles was performed through DLS, TEM and FESEM analyses. The formation of nanospheres involve two phases: a nucleation phase (5–30 min) and growth phase (30–120 min). Through in situ hydrophobization of negatively charged (with a zeta value of −4.47 mV at neutral pH) Sm2S3 nanoparticles (0.1 wt%) with a suitable amount of a cationic CTAB surfactant, a stable O/W pickering emulsion was developed. 0.1 wt% Sm2S3in situ hydrophobized with 2.7 mM CTAB offered a stable pickering emulsion with a diameter of 23 μm after 1 day of storage. This pickering emulsion improves the local concentration of CV by efficiently encapsulating dye molecules inside the core of emulsion droplets. Therefore, dye molecules get numerous opportunities to interact with the Sm2S3 photocatalyst and efficiently degrade. The pickering emulsion stabilised by 0.1 wt% of Sm2S3 nanoparticles in situ hydrophobized with 2.7 mM of CTAB results in almost 100% degradation. Moreover, using only solid Sm2S3 (having wt% of 0.025 or 0.075) as a pickering stabiliser, new PANI@Sm2S3 spherical nanocomposites were synthesised via pickering emulsion polymerization. The formation of PANI@Sm2S3 composites was identified via UV-vis, IR, and 1H-NMR investigations. The analysis of FESEM images showed that the amount of nanoparticles used in the dispersion (for 0.025 wt%, 35 nm and 0.075 wt%, 29 nm) strongly influences the size and shape of the composites.

Graphical abstract: A deeper insight into the evaluation of water-in-oil amicroemulsion templated samarium sulfide nanospheres: exploring its role in pickering emulsion formulation for photocatalytic dye degradation and synthesis of PANI@Sm2S3 nanocomposites

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2023
Accepted
10 Feb 2024
First published
12 Feb 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2024,6, 1688-1703

A deeper insight into the evaluation of water-in-oil amicroemulsion templated samarium sulfide nanospheres: exploring its role in pickering emulsion formulation for photocatalytic dye degradation and synthesis of PANI@Sm2S3 nanocomposites

S. M. Rahaman, N. Khatun, P. Pal, T. Mandal, A. Patra, M. Nandi and B. Saha, Nanoscale Adv., 2024, 6, 1688 DOI: 10.1039/D3NA01067H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements