Preparation and application of minocycline polymer micelle thermosensitive gel in spinal cord injury

Abstract

Neuroprotection is one important approach for treatment of spinal cord injury (SCI). Minocycline (MC), a known neuroprotective agent has been utilized for SCI treatment, but its therapeutic effect is limited by instability and low bioavailability. Herein, we sought to incorporate MC into polyethylene glycol (PEG)- poly (lactate-co-glycolic acid) (PGLA) co-polymer to form micelles, and subsequently micellar thermosensitive MC-loaded hydrogel (MCPP-M-gel) for application in rat model of SCI. After incorporation of MC into micellar system (MCPP-M) via thin film hydration method, it was physically characterized using encapsulation rate, zeta potential, polydispersed index (PDI) and particle size. Later, the micelles were developed into MCPP-M-gel and characterized with appropriate physico-mechanical properties. In vitro release testing was evaluated via diffusion method, while cytotoxicity was performed using neural-crest-derived ectoderm mesenchymal stem cells (EMSCs). Regarding results, controlled and prolonged MC release from MCPP-M-gel for 72 h was observed with the hydrogel exhibiting no cytotoxicity to EMSCs at the studied dose. Afterward, MC, MCPP-M, MCPP-M-gel and blank micellar thermosensitive gel were injected into the injured site of SCI rats. Histopathological evaluation demonstrated that MCPP-M-gel improved histological assessments which depicted that MCPP-M-gel could promote neuronal regeneration at the injured site of the SC after 28 days. Immunofluorescence techniques exhibited that MCPP-M-gel increased expression of neuronal class III β-tubulin (Tuj1), myelin-basic protein (MBP), growth associated protein 43 (GAP43), neurofilament protein-200 (NF-200) and Nestin, as well as reduced glial-fibrillary acidic protein (GFAP) expression in damaged areas of SC. This experimental work provides foundation for subsequent investigation and application of MCPP-M-gel in SCI models or other disorders of neurons.

Article information

Article type
Paper
Submitted
29 Jul 2024
Accepted
15 Sep 2024
First published
16 Sep 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2024, Accepted Manuscript

Preparation and application of minocycline polymer micelle thermosensitive gel in spinal cord injury

J. Gu, X. Cai, F. Raza, H. Zafar, B. Chu, H. Yuan, T. Wang, J. Wang and X. Feng, Nanoscale Adv., 2024, Accepted Manuscript , DOI: 10.1039/D4NA00625A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements