Issue 13, 2024

Structural, morphological, electrical, and dielectric properties of Na2Cu5(Si2O7)2 for ASSIBs

Abstract

Solid inorganic electrolyte materials are fundamental components for constructing all-solid-state sodium-ion batteries. These solid electrolytes offer considerable benefits related to safety, electrochemical performance, and mechanical stability in comparison to liquid organic electrolyte systems. This study investigates the sodium ion conduction mechanism and relaxation kinetics in the sorosilicate material Na2Cu5(Si2O7)2, a potential solid electrolyte, using impedance spectroscopy. Analysis of the DC conductivity data demonstrates that sodium ion mobility follows Arrhenius behavior with a thermal activation energy barrier of 1.21 eV. This work highlights the importance of carefully choosing an appropriate equivalent circuit model to extract DC conductivity parameters from impedance data, given the contributions from both grain and grain boundary effects. Analysis of the AC conductivity and dielectric constant as a function of frequency and temperature demonstrates that ionic conduction takes place in this material through a process in which charge carriers overcome correlated energy barriers, known as correlated barrier hopping. The neutron diffraction patterns were analyzed using soft bond valence sum (BVS) techniques to map the possible ionic conduction pathways within the unit cell. Examination of the data points to obstructions in the sodium ion diffusion routes along the a-axis and diagonal of the bc plane within the triclinic unit cell. These bottlenecks likely contribute to the high activation energy and correspondingly low ionic conductivity observed. Analysis of dielectric properties by modulus verified that the ionic conduction relaxation phenomena exhibit thermal activation and a distribution of relaxation times. In summary, this work elucidates the microscopic ionic conduction mechanism in Na2Cu5(Si2O7)2 through extensive analysis encompassing DC/AC conductivity, electric modulus, and dielectric constant measurements. The insights gained into the ionic conduction mechanism will aid in engineering optimized ionic conductor materials for battery technologies.

Graphical abstract: Structural, morphological, electrical, and dielectric properties of Na2Cu5(Si2O7)2 for ASSIBs

Associated articles

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
25 Feb 2024
Accepted
11 Mar 2024
First published
19 Mar 2024
This article is Open Access
Creative Commons BY license

RSC Adv., 2024,14, 9228-9242

Structural, morphological, electrical, and dielectric properties of Na2Cu5(Si2O7)2 for ASSIBs

M. Ben Bechir and M. Akermi, RSC Adv., 2024, 14, 9228 DOI: 10.1039/D4RA01454E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements