Issue 44, 2024

Cyclodextrin supramolecular assembly confined luminescent materials

Abstract

The macrocyclic supramolecular assembly confinement effect not only induces or extends the fluorescence/phosphorescence luminescence behavior of guest molecules but has also been widely applied in the research fields of chemistry, biology, and materials. This review primarily describes recent advances in cyclodextrin (CD) supramolecular assembly confined luminescent materials. Taking advantage of their hydrophobic cavity, CDs and their derivatives effectively encapsulate guest molecules and special functional groups or further assemble and polymerize to restrict the motion of guest chromophores, inducing and enhancing the luminescence behavior and realizing intelligent stimulus-responsive luminescence depending on changes in temperature, light, redox reactions and solvent polarity, which are successfully applied in targeted cell imaging, sensing, information encryption, anti-counterfeiting and flexible electronic light-emitting devices. With the emergence of new chromophores and CD primitives, spatial confinement within CD supramolecular assemblies will further realize the rapid development of supramolecular science and technology in circularly polarized luminescence, fluorescence/phosphorescence cascade energy transfer, light-harvesting energy-transfer systems and long persistent luminescent materials.

Graphical abstract: Cyclodextrin supramolecular assembly confined luminescent materials

Article information

Article type
Review Article
Submitted
24 Aug 2024
Accepted
11 Oct 2024
First published
17 Oct 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 18259-18271

Cyclodextrin supramolecular assembly confined luminescent materials

X. Zhou, H. Zhang and Y. Liu, Chem. Sci., 2024, 15, 18259 DOI: 10.1039/D4SC05698A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements