Issue 2, 2025

The effect of precipitation on gaseous oxidized and elemental mercury concentrations as quantified by two types of atmospheric mercury measurement systems

Abstract

Gaseous and particulate-bound oxidized mercury (Hg) compounds (HgII) have high solubility in precipitation compared to gaseous elemental Hg (Hg0). Wet and dry deposition are the primary routes of entry for atmospheric HgII into aquatic ecosystems. Information on how much HgII is removed from the atmosphere to the landscape during precipitation is lacking. In this study, oxidized HgII concentrations were measured with a dual-channel system (DCS) at two sites in the United States, Storm Peak Laboratory (SPL), in Colorado (2021–2022), and Beltsville (MD99) in Maryland (2022–2024), and compared with data from 16 co-located Atmospheric Mercury Network (AMNet) and Mercury Deposition Network (MDN) sites that used a KCl denuder method. At the two DCS sites, gaseous oxidized Hg concentrations were segregated by wet and dry periods from the nearest precipitation gauge to determine values for median dry HgII and median wet HgII concentrations (dry-wet = “HgII washout”) for each site. SPL had higher median ambient HgII and higher median HgII washout (90 pg m−3 and 22 pg m−3, respectively) compared to that for MD99 (43 pg m−3 and 7 pg m−3). This difference could be due to site elevation (3161 vs. 77 m) as there is generally more HgII higher in the atmosphere. In contrast, the ambient HgII/washout HgII ratios were more similar, 4.1 for SPL and 5.8 at MD99. The mean ambient HgII/washout HgII ratio for the 16 AMNet sites was 1.8 ± 0.1. The AMNet HgII data are known to be biased low due to issues with the KCl-denuder method, and this low bias appears to result in lower ambient HgII/washout HgII ratio observed for the AMNet sites. Correction factors for AMNet data using HgII measurements from DCS instruments were found to range from 2–3 and could be used to improve the accuracy of older data.

Graphical abstract: The effect of precipitation on gaseous oxidized and elemental mercury concentrations as quantified by two types of atmospheric mercury measurement systems

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Nov 2024
Accepted
12 Dec 2024
First published
23 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2025,5, 204-219

The effect of precipitation on gaseous oxidized and elemental mercury concentrations as quantified by two types of atmospheric mercury measurement systems

P. S. Weiss-Penzias, S. N. Lyman, T. Elgiar, L. E. Gratz, W. T. Luke, G. Quevedo, N. Choma and M. S. Gustin, Environ. Sci.: Atmos., 2025, 5, 204 DOI: 10.1039/D4EA00145A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements