Issue 20, 2021

Synthesis of water-soluble surfactants using catalysed condensation polymerisation in green reaction media

Abstract

Sustainable and biobased surfactants are required for a wide range of everyday applications. Key drivers are cost, activity and efficiency of production. Polycondensation is an excellent route to build surfactant chains from bio-sourced monomers, but this typically requires high processing temperatures (≥200 °C) to remove the condensate and to lower viscosity of the polymer melt. In addition, high temperatures also increase the degree of branching and cause discolouration through the degradation of sensitive co-initiators and monomers. Here we report the synthesis of novel surface-active polymers from temperature sensitive renewable building blocks such as dicarboxylic acids, polyols (D-sorbitol) and fatty acids. We demonstrate that the products have the potential to be key components in renewable surfactant design, but only if the syntheses are optimised to ensure linear chains with hydrophilic character. The choice of catalyst is key to this control and we have assessed three different approaches. Additionally, we also demonstrate that use of supercritical carbon dioxide (scCO2) can dramatically improve conversion by reducing reaction viscosity, lowering reaction temperature, and driving condensate removal. We also evaluate the performance of the new biobased surfactants, focussing upon surface tension, and critical micelle concentration.

Graphical abstract: Synthesis of water-soluble surfactants using catalysed condensation polymerisation in green reaction media

Supplementary files

Article information

Article type
Paper
Submitted
25 mars 2021
Accepted
26 avr. 2021
First published
26 avr. 2021
This article is Open Access
Creative Commons BY license

Polym. Chem., 2021,12, 2992-3003

Synthesis of water-soluble surfactants using catalysed condensation polymerisation in green reaction media

A. R. Goddard, E. A. Apebende, J. C. Lentz, K. Carmichael, V. Taresco, D. J. Irvine and S. M. Howdle, Polym. Chem., 2021, 12, 2992 DOI: 10.1039/D1PY00415H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements