β-CsHg2I5, a compound with rare [Hg2I5] dimers and large optical anisotropy†
Abstract
Hg-based compounds show abundant structural diversity and distinguished properties. Herein, a new phase transition compound CsHg2I5 was reported. The high-temperature phase β-CsHg2I5 with rare [Hg2I5] dimers was synthesized by the flux method at 573 K, and it shows a reversible phase transition at a low temperature of ∼100 K to form the low-temperature phase α-CsHg2I5. The two phases crystallize in the same P21/c space group, with different crystal structures. β-CsHg2I5 is composed of rare [Hg2I5] dimers and [CsI11] polyhedral units, while α-CsHg2I5 is composed of [Hg4I11] and [CsI10] units. The experimental band gap of β-CsHg2I5 was found to be 2.58 eV. Owing to the presence of [Hg2I5]∞ pseudo-layers, β-CsHg2I5 exhibits large optical anisotropy with a calculated birefringence of 0.132@1064 nm. Meanwhile, β-CsHg2I5 is a congruent compound and the congruent point is ∼481 K. Theoretical calculations indicate that the rare [Hg2I5] dimer is a nonlinear active unit, which can be used as a new fundamental building block for the design of advanced nonlinear optical materials. Moreover, a CsI–HgI2 pseudo-binary diagram was drawn. The results enrich the structural diversity of Hg-based halides and give some insights into the development of new functional materials based on rare [Hg2I5] dimers.
- This article is part of the themed collection: Dalton Transactions HOT Articles