Issue 3, 2019

External temperature control of lymphatic drainage of thermo-sensitive nanomaterials

Abstract

Nano-carrier-facilitated delivery of bioactive molecules into lymph nodes (LNs) has found application in the treatment and diagnosis of numerous immune-related diseases. Much work has focused on optimization of physicochemical properties of the nano-carrier to enhance lymphatic drainage passively, whereas active modulation of the quantity and timing of lymphatic delivery remains a significant challenge. Here, inspired by the success of thermo-modulation of tumor targeting, we have developed a simple external temperature control strategy to regulate the distribution of thermo-sensitive nanomaterials between the injection site and draining LNs. To demonstrate feasibility of this strategy, we injected Rhodamine-B-labeled poly(N-isopropylacrylamide) (RhB-PNIPAm) (2.5 kDa) into the footpad of mice at different initial temperatures – either below or above the lower critical solution temperature (LCST), followed by physical cooling of the injection site. We show that RhB-PNIPAm drained efficiently into the popliteal and inguinal nodes (pLNs, iLNs, respectively) with low levels of accumulation in major internal organs. Within the first two hours post-injection the rate of drainage was primarily dependent on the initial temperature of RhB-PNIPAm. However, over the course of 24 h, temperature gradient due to local cooling affected significantly the draining of the injection site, resulting in differential accumulation of RhB-PNIPAm in the proximal (pLNs) versus the distal (iLNs) nodes. This study provides a new methodology and insights for modulating in vivo lymphatic distribution of thermo-sensitive nanomaterials with implications in immune regulation and immunotherapy.

Graphical abstract: External temperature control of lymphatic drainage of thermo-sensitive nanomaterials

Supplementary files

Article information

Article type
Paper
Submitted
15 okt 2018
Accepted
28 nov 2018
First published
29 nov 2018

Biomater. Sci., 2019,7, 750-759

External temperature control of lymphatic drainage of thermo-sensitive nanomaterials

M. Zhang, W. Chen, Y. Hong, H. Chen and C. Wang, Biomater. Sci., 2019, 7, 750 DOI: 10.1039/C8BM01298A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements