DOI:
10.1039/C2RA21929H
(Paper)
RSC Adv., 2012,
2, 11061-11066
Easy and efficient one-pot synthesis of pyrazolo[1,5-c]quinazolines under mild copper-catalyzed conditions†
Received
24th August 2012
, Accepted 19th September 2012
First published on 19th September 2012
Abstract
An easy and efficient method has been developed for the synthesis of pyrazolo[1,5-c]quinazolines via one-pot two-step reactions of readily available substituted 1-(2-halophenyl)-3-akylprop-2-yn-1-ones, hydrazine hydrochloride and amidine hydrochlorides under mild conditions, and the corresponding pyrazolo[1,5-c]quinazolines were obtained in good to excellent yields. The novel method affords a new strategy for the construction of diverse and useful poly N-heterocyclic compounds.
Introduction
N-Heterocycles are widely found in natural products and biologically active molecules, and they play key roles in the pharmaceutical and agrochemical industries.1 Pyrazoles are important building blocks of man-made biologically active compounds such as celecoxib, fipronil, lonazolac and viagra, although they are rarely found in natural products.2 Quinazolines show various biological and medicinal properties. For example, they have been used as potent tyrosine kinase and cellular phosphorylation inhibitors,3 ligands for benzodiazepine and γ-aminobutyric acid (GABA) receptors in the central nervous system (CNS)4 or as DNA binders,5 and anticancer,6 antiviral,7 and antitubercular agents.8 Some quinazolines have been popular drugs such as Erlotinib, used in the treatment of several types of tumors,9 Prazosin as an α-adrenergic blocker,10 and Iressa as an epidermal growth factor receptor inhibitor approved by the Food and Drug Administration in the USA for the treatment of lung cancer.11
N-Fused heterocycles of pyrazoles and quinazolines, pyrazoloquinazolines (Fig. 1), exhibit some biological functions, and they have been used as potent IκB kinase and phosphodiesterase 10A inhibitors,12,13 AMPA and kainate receptor and Gly/NMDA receptor antagonists.14,15 However, the methods for the synthesis of pyrazoloquinazolines are very limited.12–15 In the past ten years, copper-catalyzed couplings have attracted much attention for their wide applications,16 and various N-heterocycles were synthesized via the copper-catalyzed coupling strategy by other groups17 and us.18 Herein, we report a new, easy and efficient one-pot synthesis of pyrazoloquinazolines under copper-catalyzed conditions.
Results and discussion
Considering the ready availability of the substrates, the reaction of 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (1a), hydrazine hydrochloride and acetamidine hydrochloride (2a) was chosen as the model to optimize the reaction conditions including copper-catalysts, ligands, bases, solvents and temperature under nitrogen atmosphere. As shown in Table 1, the reaction of the three components is a one-pot two-step process: coupling of 1a with hydrazine hydrochloride in DMSO first led to intermediate Ia in the presence of Cs2CO3 at 80 °C for 12 h, and then treatment of Ia with 2a provided the target product (3a) under copper-catalysis for 24 h (see Schemes 1 and 2). First, the effect of the ligands was investigated by using 10 mol% CuI as the catalyst, Cs2CO3 as the base, DMSO as the solvent (entries 1–4), the reaction was performed at 80 °C for the first step and at room temperature for the second step, and the results showed that the highest yield was provided in the absence of a ligand (entry 4). Several copper catalysts were screened (compare entries 4–9), and CuI exhibited the highest activity (entry 4). No target product was observed in the absence of copper catalyst (entry 10). K2CO3 and K3PO4 were used as the bases (entries 11 and 12), and they gave lower yields than Cs2CO3. DMF and 1,4-dioxane were attempted as the solvents (entries 13 and 14), and DMSO was the most suitable (compare entries 4, 13 and 14). We investigated different reaction temperatures (compare entries 4, 15 and 16), and room temperature was a good choice (entry 4).
Entry |
Cat. |
Ligand |
Base |
Solvent |
Temp. (°C) |
Yield (%)b |
Reaction conditions: under nitrogen atmosphere, 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (1a) (0.25 mmol), hydrazine hydrochloride (0.375 mmol), acetamidine hydrochloride (2a) (1 mmol), catalyst (0.025 mmol), ligand (0.05 mmol), base (1.5 mmol), solvent (2 mL), reaction time (12 h for the first step; 24 h for the second step).
Isolated yield from 1a to 3a.
|
1 |
CuI |
DMEDA |
Cs2CO3 |
DMSO |
rt |
74 |
2 |
CuI |
L-proline |
Cs2CO3 |
DMSO |
rt |
58 |
3 |
CuI |
pipecolinic acid |
Cs2CO3 |
DMSO |
rt |
78 |
4 |
CuI
|
— |
Cs2CO3
|
DMSO
|
rt
|
89
|
5 |
CuBr |
— |
Cs2CO3 |
DMSO |
rt |
85 |
6
|
CuCl |
— |
Cs2CO3 |
DMSO |
rt |
82 |
7 |
Cu2O |
— |
Cs2CO3 |
DMSO |
rt |
84 |
8 |
Cu(OAc)2 |
— |
Cs2CO3 |
DMSO |
rt |
77 |
9 |
CuCl2 |
— |
Cs2CO3 |
DMSO |
rt |
80 |
10 |
— |
— |
Cs2CO3 |
DMSO |
rt |
0 |
11 |
CuI |
— |
K2CO3 |
DMSO |
rt |
79 |
12 |
CuI |
— |
K3PO4 |
DMSO |
rt |
41 |
13 |
CuI |
— |
Cs2CO3 |
DMF |
rt |
84 |
14 |
CuI |
— |
Cs2CO3 |
dioxane |
rt |
37 |
15 |
CuI |
— |
Cs2CO3 |
DMSO |
40 |
81 |
16 |
CuI |
— |
Cs2CO3 |
DMSO |
60 |
82 |
|
| Scheme 2 Possible mechanism for the synthesis of pyrazolo[1,5-c]quinazolines. | |
The substrate scope for the synthesis of pyrazolo[1,5-c]quinazoline derivatives from one-pot two-step reactions of substituted 1-(2-halophenyl)-3-alkylprop-2-yn-1-ones, hydrazine hydrochloride, and amidine hydrochlorides was investigated under the optimized conditions (10 mol% CuI as the catalyst, 6 equiv. of Cs2CO3 as the base in DMSO under nitrogen atmosphere). As shown in Table 2, the tested substrates afforded good to excellent yields. For the substrates 1-(2-bromophenyl)-3-alkylprop-2-yn-1-ones, the reactions performed very well at room temperature when amidines were used as the partners (see entries 1–7 and 9–22). The reaction at 80 °C provided target product 3h in 61% yield when guanidine was applied as the partner (entry 8). The substrate with a C–Cl bond, 1-(2-chlorophenyl)-3-phenylprop-2-yn-1-one, also gave the target product (3a) in 71% yield when the temperature was raised to 80 °C (entry 23). Interestingly, no extra ligand and additive were required in the reactions above, and the results showed that the pyrazole group in 5-(2-halophenyl)-3-phenyl-1H-pyrazoles (I) from the first step coupling of 1-(2-halophenyl)-3-alkylprop-2-yn-1-ones with hydrazine was of ortho substituent effect (see Schemes 1 and 2).18a In addition, the one-pot two-step reactions could tolerate some functional groups such as ethers (entries 9–12), C–Cl bonds (entries 13–16), and cyano groups (entries 17–19).
Table 2 One-pot two-step synthesis of pyrazolo[1,5-c]quinazolines under copper-catalyzed conditionsa
Entry |
1
|
2
|
3 (Yieldb) |
Reaction conditions: under nitrogen atmosphere, 1-(2-halophenyl)-3-alkylprop-2-yn-1-one (1) (0.25 mmol), hydrazine hydrochloride (0.375 mmol), amidine hydrochloride (2) (1 mmol), CuI (0.025 mmol), Cs2CO3 (1.5 mmol), DMSO (2 mL), reaction time (12 h for the first step; 24 h for the second step). Temperature (80 °C for entries 8 and 23; room temperature (∼25 °C) for the others).
Isolated yield.
|
1 |
|
|
|
2 |
1a
|
|
|
3 |
1a
|
|
|
4 |
1a
|
|
|
5 |
1a
|
|
|
6 |
1a
|
|
|
7 |
1a
|
|
|
8 |
1a
|
|
|
9 |
|
2a
|
|
10 |
1b
|
2c
|
|
11 |
1b
|
2d
|
|
12 |
1b
|
2e
|
|
13 |
|
2a
|
|
14 |
1c
|
2c
|
|
15 |
1c
|
2d
|
|
16 |
1c
|
2e
|
|
17 |
|
2a
|
|
18 |
1d
|
2d
|
|
19 |
1d
|
2e
|
|
20 |
|
2a
|
|
21 |
1e
|
2d
|
|
22 |
1e
|
2e
|
|
23 |
|
2a
|
|
As shown in Scheme 1, two control experiments were performed in order to explore the one-pot two-step reaction mechanism. First, coupling of 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one with hydrazine hydrochloride in the presence of Cs2CO3 gave 5-(2-bromophenyl)-3-phenyl-1H-pyrazole (Ia) in 89% yield (Scheme 1A), whose structure was identified by NMR and MS. The copper-catalyzed reaction of Ia with acetamidine hydrochloride (2a) afforded the target product 3a in 92% yield under the standard conditions (Scheme 1B). Therefore, a possible mechanism for the synthesis of pyrazolo[1,5-c]quinazolines was proposed in Scheme 2. Firstly, coupling of 1-(2-halophenyl)-3-alkylprop-2-yn-1-one (1) with hydrazine provides intermediate I, and N-arylation of I with amidine (2) gives II. Finally, intramolecular nucleophilic attack of the NH of pyrazole to the amidine group in II affords the target product (3) freeing ammonia.
Conclusions
We have developed a convenient and efficient one-pot two-step method for the synthesis of pyrazolo[1,5-c]quinazoline derivatives. The protocol uses readily available substituted 1-(2-halophenyl)-3-akylprop-2-yn-1-ones, hydrazine hydrochloride and amidine hydrochlorides as the starting materials, inexpensive CuI as the catalyst, and the corresponding pyrazolo[1,5-c]quinazolines were obtained in good to excellent yields. The second copper-catalyzed reactions proceeded very well under mild conditions (at room temperature for most of the reactions). The novel method provides diverse and useful N-fused heterocyclic compounds for combinatorial chemistry and medicinal chemistry.
Experimental section
General methods
All reactions were carried out under nitrogen atmosphere. Proton and carbon magnetic resonance spectra (1H NMR and 13C NMR) were recorded using tetramethylsilane (TMS) in the solvent of CDCl3 as the internal standard (1H NMR: TMS at 0.00 ppm, CDCl3 at 7.26 ppm; 13C NMR: CDCl3 at 77.0 ppm) or tetramethylsilane (TMS) in the solvent of DMSO-d6 as the internal standard (1H NMR: TMS at 0.00 ppm, DMSO at 2.50 ppm; 13C NMR: DMSO at 40.0 ppm).
Synthesis of compounds 1a–f
Compounds 1a–f were prepared according to previous procedures.19–21
General procedure for the synthesis of compounds 3a–v
Substituted 1-(2-halophenyl)-3-akylprop-2-yn-1-one (1) (0.25 mmol), hydrazine hydrochloride (0.375 mmol), Cs2CO3 (1.5 mmol, 492 mg), DMSO (2 mL) were added to a 25 ml Schlenk tube charged with a magnetic stirrer, and the mixture was stirred at 80 °C for 12 h. The resulting solution was cooled to room temperature, and then amidine hydrochloride (2) (1 mmol) and CuI (0.025 mmol, 4.8 mg) were added to the tube under nitrogen atmosphere. The mixture was stirred at room temperature or 80 °C (see Table 2 for the details) under nitrogen atmosphere for 24 h. After completion of the reaction, the resulting solution was cooled to room temperature. The solvent was removed with the aid of a rotary evaporator, and the residue was purified by column chromatography on silica gel to provide the desired product (3a–v).
5-Methyl-2-phenylpyrazolo[1,5-c]quinazoline (3a).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 57 mg (89%) using 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (1a) as the substrate; 46 mg (71%) using 1-(2-chlorophenyl)-3-phenylprop-2-yn-1-one (1g) as the substrate. White solid, mp 129–131 °C. 1H NMR (CDCl3, 300 MHz) δ 8.00 (m, 3H), 7.84 (m, 1H), 7.60 (m, 1H), 7.44 (m, 4H), 7.19 (s, 1H), 3.01 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ 154.8, 148.6, 140.5, 139.8, 132.6, 129.7, 129.2, 128.9, 127.9, 127.1, 126.8, 123.2, 119.5, 95.5, 20.2. HR-MS (ESI) [M+H]+m/z calcd for C17H14N3 260.1188, found 260.1195.
5-Ethyl-2-phenylpyrazolo[1,5-c]quinazoline (3b).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 58 mg (85%). White solid, mp 86–88 °C. 1H NMR (CDCl3, 300 MHz) δ 8.00 (m, 2H), 7.91 (m, 2H), 7.57 (m, 1H), 7.42 (m, 4H), 7.14 (s, 1H), 3.39 (dd, 2H, J = 7.6 Hz), 1.54 (t, 3H, J = 7.6 Hz). 13C NMR (CDCl3, 75 MHz) δ 154.5, 152.4, 140.5, 139.9, 132.8, 129.6, 129.1, 128.9, 128.2, 127.0, 126.8, 123.1, 119.5, 95.3, 26.4, 10.6. HR-MS (ESI) [M+H]+m/z calcd for C18H16N3 274.1344, found 274.1346.
2-Phenyl-5-propylpyrazolo[1,5-c]quinazoline (3c).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 66 mg (92%). White solid, mp 83–85 °C. 1H NMR (CDCl3, 300 MHz) δ 8.02 (m, 2H), 7.95 (m, 1H), 7.87 (m, 1H), 7.58 (m, 1H), 7.43 (m, 4H), 7.18 (s, 1H), 3.39 (t, 2H, J = 7.6 Hz), 2.07 (m, 2H), 1.13 (t, 3H, J = 7.6 Hz). 13C NMR (CDCl3, 75 MHz) δ 154.5, 151.5, 140.6, 139.9, 132.8, 129.6, 129.1, 128.9, 128.2, 127.0, 126.8, 123.1, 119.5, 95.3, 34.8, 19.9, 14.2. HR-MS (ESI) [M+H]+m/z calcd for C19H18N3 288.1501, found 288.1507.
5-Cyclopropyl-2-phenylpyrazolo[1,5-c]quinazoline (3d).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 60 mg (84%). White solid, mp 93–95 °C. 1H NMR (CDCl3, 300 MHz) δ 8.03 (m, 2H), 7.93 (m, 1H), 7.72 (m, 1H), 7.43 (m, 5H), 7.19 (s, 1H), 3.31 (m, 1H), 1.45 (m, 2H), 1.24 (m, 2H). 13C NMR (CDCl3, 75 MHz) δ 154.6, 152.9, 140.6, 140.1, 132.8, 129.6, 129.0, 128.9, 127.8, 126.9, 126.4, 123.1, 119.1, 95.4, 11.1, 10.3. HR-MS (ESI) [M+H]+m/z calcd for C19H16N3 286.1344, found 286.1345.
2,5-Diphenylpyrazolo[1,5-c]quinazoline (3e).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 75 mg (94%). White solid, mp 102–104 °C. 1H NMR (CDCl3, 300 MHz) δ 8.50 (m, 2H), 7.96 (m, 4H), 7.55 (m, 4H), 7.42 (m, 4H), 7.23 (s, 1H). 13C NMR (CDCl3, 75 MHz) δ 154.6, 147.6, 141.9, 140.1, 132.9, 132.5, 131.0, 130.8, 129.8, 129.2, 128.9, 128.8, 128.2, 127.6, 126.9, 123.1, 119.6, 95.3. HR-MS (ESI) [M+H]+m/z calcd for C22H16N3 322.1344, found 322.1349.
2-Phenyl-5-p-tolylpyrazolo[1,5-c]quinazoline (3f).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 60 mg (72%). White solid, mp 142–144 °C. 1H NMR (CDCl3, 300 MHz) δ 8.43 (m, 2H), 7.97 (m, 4H), 7.58 (m, 1H), 7.39 (m, 6H), 7.24 (s, 1H), 2.45 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ 154.6, 147.6, 141.9, 141.4, 140.2, 132.6, 130.8, 130.1, 129.7, 129.1, 128.9, 128.8, 128.2, 128.7, 127.4, 126.9, 123.0, 119.5, 95.2, 21.8. HR-MS (ESI) [M+H]+m/z calcd for C23H18N3 336.1501, found 336.1501.
2-Phenyl-5-(pyridin-4-yl)pyrazolo[1,5-c]quinazoline (3g).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 72 mg (89%). White solid, mp 206–208 °C. 1H NMR (CDCl3, 300 MHz) δ 8.86 (m, 2H), 8.48 (m, 2H), 8.01 (m, 4H), 7.55 (m, 5H), 7.29 (s, 1H). 13C NMR (CDCl3, 75 MHz) δ 155.1, 150.1, 144.9, 141.9, 140.1, 139.7, 132.2, 130.1, 129.4, 129.1, 128.9, 128.5, 126.8, 124.4, 123.1, 119.8, 95.2. HR-MS (ESI) [M+H]+m/z calcd for C21H15N4 323.1297, found 323.1296.
2-Phenylpyrazolo[1,5-c]quinazolin-5-amine (3h).
Eluent: petroleum ether–ethyl acetate (4:1). Yield 40 mg (61%). White solid, mp 241–243 °C. 1H NMR (DMSO-d6, 600 MHz) δ 8.10 (m, 2H), 8.05 (m, 1H), 7.69 (s, 1H), 7.60 (s, 2H), 7.52 (m, 4H), 7.44 (m, 1H), 7.30 (m, 1H). 13C NMR (DMSO-d6, 150 MHz) δ 153.8, 145.5, 142.4, 141.3, 132.7, 130.3, 129.5, 129.4, 126.9, 125.2, 124.0, 123.2, 116.2, 96.7. HR-MS (ESI) [M+H]+m/z calcd for C16H13N4 261.1140, found 261.1147.
9-Methoxy-5-methyl-2-phenylpyrazolo[1,5-c]quinazoline (3i).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 67 mg (93%). White solid, mp 131–133 °C. 1H NMR (CDCl3, 300 MHz) δ 8.02 (m, 2H), 7.74 (m, 1H), 7.44 (m, 3H), 7.25 (m, 1H), 7.17 (m, 1H), 7.13 (s, 1H), 3.90 (s, 3H), 2.96 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ 158.4, 154.4, 146.4, 140.3, 134.4, 132.7, 129.4, 129.1, 128.9, 126.8, 120.3, 118.9, 104.2, 95.3, 55.7, 19.9. HR-MS (ESI) [M+H]+m/z calcd for C18H16N3O 290.1293, found 290.1294.
9-Methoxy-2-phenyl-5-propylpyrazolo[1,5-c]quinazoline (3j).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 49 mg (62%). White solid, mp 115–117 °C. 1H NMR (CDCl3, 300 MHz) δ 8.01 (m, 2H), 7.77 (m, 1H), 7.41 (m, 3H), 7.25 (m, 1H), 7.15 (m, 2H), 3.90 (s, 3H), 3.32 (t, 2H, J = 7.9 Hz), 2.04 (m, 2H), 1.12 (t, 3H, J = 7.2 Hz). 13C NMR (CDCl3, 75 MHz) δ 158.4, 154.2, 149.4, 140.4, 134.5, 132.8, 129.6, 129.0, 128.9, 126.8, 120.3, 118.8, 104.1, 95.1, 55.7, 34.7, 19.9, 14.2. HR-MS (ESI) [M+H]+m/z calcd for C20H20N3O 318.1606, found 318.1601.
5-Cyclopropyl-9-methoxy-2-phenylpyrazolo[1,5-c]quinazoline (3k).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 65 mg (83%). White solid, mp 123–125 °C. 1H NMR (CDCl3, 300 MHz) δ 8.08 (m, 2H), 7.67 (m, 1H), 7.45 (m, 3H), 7.27 (m, 1H), 7.16 (m, 2H), 3.90 (s, 3H), 1.44 (m, 2H), 1.23 (m, 2H). 13C NMR (CDCl3, 75 MHz) δ 157.9, 154.2, 150.6, 140.4, 134.7, 132.9, 129.3, 129.0, 128.9, 126.8, 119.7, 118.8, 104.1, 95.2, 55.7, 10.9, 9.9. HR-MS (ESI) [M+H]+m/z calcd for C20H18N3O 316.1450, found 316.1451.
9-Methoxy-2,5-diphenylpyrazolo[1,5-c]quinazoline (3l).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 65 mg (74%). White solid, mp 144–145 °C. 1H NMR (CDCl3, 300 MHz) δ 8.39 (m, 2H), 7.90 (m, 2H), 7.78 (m, 1H), 7.45 (m, 3H), 7.33 (m, 3H), 7.20 (m, 1H), 7.10 (m, 2H), 3.90 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ 158.9, 154.4, 145.5, 141.7, 134.8, 133.0, 132.7, 130.7, 130.6, 130.4, 129.1, 128.8, 128.2, 126.8, 120.5, 119.2, 104.0, 95.1, 55.7. HR-MS (ESI) [M+H]+m/z calcd for C23H18N3O 352.1450, found 352.1447.
9-Chloro-5-methyl-2-phenylpyrazolo[1,5-c]quinazoline (3m).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 51 mg (69%). White solid, mp 160–162 °C. 1H NMR (CDCl3, 300 MHz) δ 7.97 (m, 2H), 7.85 (m, 1H), 7.72 (m, 1H), 7.44 (m, 4H), 7.11 (s, 1H), 2.96 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ 154.9, 148.8, 139.3, 138.2, 132.6, 132.3, 130.0, 129.4, 129.3, 128.9, 126.8, 122.5, 120.5, 95.9, 20.1. HR-MS (ESI) [M+H]+m/z calcd for C17H13ClN3 294.0798, found 294.0801.
9-Chloro-2-phenyl-5-propylpyrazolo[1,5-c]quinazoline (3n).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 60 mg (75%). White solid, mp 144–145 °C. 1H NMR (CDCl3, 300 MHz) δ 7.98 (m, 2H), 7.89 (m, 1H), 7.76 (m, 1H), 7.44 (m, 4H), 7.14 (s, 1H), 3.33 (t, 2H, J = 7.2 Hz), 2.02 (m, 2H), 1.12 (t, 3H, J = 7.6 Hz). 13C NMR (CDCl3, 75 MHz) δ 154.6, 151.7, 139.4, 138.3, 132.5, 132.4, 129.9, 129.7, 129.2, 128.9, 126.8, 122.4, 120.5, 95.8, 34.7, 19.7, 14.1. HR-MS (ESI) [M+H]+m/z calcd for C19H17ClN3 322.1111, found 322.1111.
9-Chloro-5-cyclopropyl-2-phenylpyrazolo[1,5-c]quinazoline (3o).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 60 mg (75%). White solid, mp 150–152 °C. 1H NMR (CDCl3, 300 MHz) δ 7.90 (m, 2H), 7.75 (m, 1H), 7.51 (m, 1H), 7.32 (m, 4H), 7.03 (s, 1H), 3.18 (m, 1H), 1.33 (m, 2H), 1.13(m, 2H). 13C NMR (CDCl3, 75 MHz) δ 154.7, 153.2, 139.4, 138.5, 132.5, 131.7, 129.9, 129.3, 129.2, 128.9, 126.8, 122.4, 119.9, 95.8, 11.0, 10.6. HR-MS (ESI) [M+H]+m/z calcd for C19H15ClN3 320.0955, found 320.0955.
9-Chloro-2,5-diphenylpyrazolo[1,5-c]quinazoline (3p).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 65 mg (74%). White solid, mp 159–161 °C. 1H NMR (CDCl3, 300 MHz) δ 8.50 (m, 2H), 7.94 (m, 3H), 7.86 (m, 1H), 7.52 (m, 4H), 7.40 (m, 3H), 7.21 (s, 1H). 13C NMR (CDCl3, 75 MHz) δ 154.9, 147.6, 140.8, 138.5, 133.1, 132.5, 132.2, 131.2, 130.8, 130.3, 130.2, 129.3, 128.9, 128.2, 126.8, 122.4, 120.5, 95.8. HR-MS (ESI) [M+H]+m/z calcd for C22H15ClN3 356.0955, found 356.0950.
4-(5-Methylpyrazolo[1,5-c]quinazolin-2-yl)benzonitrile (3q).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 52 mg (73%). White solid, mp 236–237 °C. 1H NMR (CDCl3, 300 MHz) δ 8.14 (m, 2H), 8.01 (m, 1H), 7.89 (m, 1H), 7.75 (m, 2H), 7.65 (m, 1H), 7.56 (m, 1H), 7.28 (s, 1H), 3.03 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ 152.6, 148.4, 140.9, 139.8, 137.0, 132.7, 130.1, 128.2, 127.5, 127.2, 123.2, 119.4, 118.9, 112.5, 95.9, 20.1. HR-MS (ESI) [M+H]+m/z calcd for C18H13N4 285.1140, found 285.1143.
4-(5-Cyclopropylpyrazolo[1,5-c]quinazolin-2-yl)benzonitrile (3r).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 55 mg (71%). White solid, mp 232–234 °C. 1H NMR (CDCl3, 300 MHz) δ 8.16 (m, 2H), 8.00 (m, 1H), 7.78 (m, 3H), 7.61 (m, 1H), 7.50 (m, 1H), 7.31 (s, 1H), 3.31 (m, 1H), 1.50 (m, 2H), 1.27 (m, 2H). 13C NMR (CDCl3, 75 MHz) δ 152.7, 152.4, 141.0, 140.0, 137.2, 132.7, 130.0, 128.0, 127.2, 126.7, 123.1, 118.9, 118.8, 112.3, 95.7, 10.9, 10.5. HR-MS (ESI) [M+H]+m/z calcd for C20H15N4 311.1297, found 311.1306.
4-(5-Phenylpyrazolo[1,5-c]quinazolin-2-yl)benzonitrile (3s).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 64 mg (74%). White solid, mp 229–231 °C. 1H NMR (CDCl3, 300 MHz) δ 8.47 (m, 2H), 8.05 (m, 4H), 7.68 (m, 3H), 7.59 (m, 4H), 7.34 (s, 1H). 13C NMR (CDCl3, 75 MHz) δ 152.5, 147.4, 142.3, 140.1, 136.9, 132.7, 132.5, 131.2, 130.6, 130.3, 129.0, 128.3, 127.9, 127.2, 126.7, 123.0, 119.4, 118.9, 112.5, 95.7. HR-MS (ESI) [M+H]+m/z calcd for C23H15N4 347.1297, found 347.1292.
2-n-Hexyl-5-methylpyrazolo[1,5-c]quinazoline (3t).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 50 mg (75%). Yellow oil. 1H NMR (CDCl3, 300 MHz) δ 7.91 (m, 1H), 7.82 (m, 1H), 7.57 (m, 1H), 7.46 (m, 1H), 6.76 (s, 1H), 2.96 (s, 3H), 2.87 (t, 2H, J = 7.6 Hz), 1.78 (m, 2H), 1.35 (m, 6H), 0.89 (t, 3H, J = 7.2 Hz). 13C NMR (CDCl3, 75 MHz) δ 158.1, 148.3, 139.9, 139.8, 129.4, 127.8, 126.8, 123.1, 119.5, 97.3, 31.7, 29.7, 29.2, 28.8, 22.7, 20.3, 14.2. HR-MS (ESI) [M+H]+m/z calcd for C17H22N3 268.1814, found 268.1819.
5-Cyclopropyl-2-n-hexylpyrazolo[1,5-c]quinazoline (3u).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 47 mg (64%). Yellow oil. 1H NMR (CDCl3, 300 MHz) δ 7.90 (m, 1H), 7.73 (m, 1H), 7.52 (m, 1H), 7.42 (m, 1H), 6.77 (s, 1H), 3.18 (m, 1H), 2.89 (t, 2H, J = 7.9 Hz), 1.80 (m, 2H), 1.40 (m, 8H), 1.20 (m, 2H), 0.89 (t, 3H, J = 7.2 Hz). 13C NMR (CDCl3, 75 MHz) δ 157.9, 152.6, 140.0, 129.3, 127.6, 126.1, 123.0, 118.9, 97.1, 31.7, 29.7, 29.3, 28.9, 22.7, 14.2, 11.1, 10.1. HR-MS (ESI) [M+H]+m/z calcd for C19H24N3 294.1970, found 294.1971.
2-n-Hexyl-5-phenylpyrazolo[1,5-c]quinazoline (3v).
Eluent: petroleum ether–ethyl acetate (5:1). Yield 49 mg (60%). Yellow oil. 1H NMR (CDCl3, 300 MHz) δ 8.41 (m, 2H), 7.98 (m, 2H), 7.54 (m, 5H), 6.84 (s, 1H), 2.87 (t, 2H, J = 7.6 Hz), 1.77 (m, 2H), 1.35 (m, 6H), 0.89 (t, 3H, J = 6.9 Hz). 13C NMR (CDCl3, 75 MHz) δ 158.2, 147.6, 141.3, 140.1, 133.1, 130.9, 130.5, 129.6, 128.7, 128.2, 127.4, 123.0, 119.6, 97.2, 31.7, 29.5, 29.3, 28.8, 22.7, 14.2. HR-MS (ESI) [M+H]+m/z calcd for C22H24N3 330.1970, found 330.1972.
5-(2-Bromophenyl)-3-phenyl-1H-pyrazole (Ia).
Eluent: petroleum ether–ethyl acetate (3:1). Yield 66 mg (89%). Light yellow solid. 1H NMR (CDCl3, 300 MHz) δ 7.65 (m, 4H), 7.31 (m, 5H), 6.94 (s, 1H). 13C NMR (CDCl3, 75 MHz) δ133.9, 131.0, 129.8, 128.9, 128.3, 127.7, 125.8, 121.8, 103.8. ESIMS [M+H]+m/z 299.2, 301.2, [M+Na]+m/z 322.0, 323.0.
Acknowledgements
The authors wish to thank the National Natural Science Foundation of China (Grant Nos. 20972083 and 21172128), and the Ministry of Science and Technology of China (Grant No. 2012CB722605) for financial support.
References
-
(a)
J. K. Landquist, in Comprehensive Heterocyclic Chemistry, ed.: A. R. Katritzky and C. W. Rees, Pergamon, New York, 1984 Search PubMed;
(b)
P. J. Crowley, in Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees, Pergamon, New York, 1984 Search PubMed;
(c) See, for example: The Alkaloids: Chemistry and Biology, ed. G. A. Cordell, Academic Press, San Diego, CA, 2000; Vol. 54, and others in this series Search PubMed.
-
(a) A. Strecker, Justus Liebigs Ann. Chem., 1850, 75, 27;
(b) A. Döling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39, 3168 CrossRef CAS;
(c) C. O. Kappe, Acc. Chem. Res., 2000, 33, 879 CrossRef;
(d) K. Kumari, D. S. Raghuvanshi, V. Jouikov and K. N. Singh, Tetrahedron Lett., 2012, 53, 1130 CrossRef CAS.
- D. W. Fry, A. J. Kraker, A. McMichael, L. A. Ambroso, J. M. Nelson, W. R. Leopold, R. W. Connors and A. J. Bridges, Science, 1994, 265, 1093 CrossRef CAS.
-
(a) V. Colotta, D. Catarzi, F. Varano, O. Lenzi, G. Filacchioni, C. Costagli, A. Galli, C. Ghelardini, N. Galeotti, P. Gratteri, J. Sgrignani, F. Deflorian and S. Moro, J. Med. Chem., 2006, 49, 6015 CrossRef CAS;
(b) A. Lewerenz, S. Hentschel, Z. Vissiennon, S. Michael and K. Nieber, Drug Dev. Res., 2003, 58, 420 CrossRef CAS.
- N. Malecki, P. Carato, G. Rigo, J. F. Goossens, R. Houssin, C. Bailly and J. P. Henichart, Bioorg. Med. Chem., 2004, 12, 641 CrossRef CAS.
-
(a) L. A. Doyle and D. D. Ross, Oncogene, 2003, 22, 7340 CrossRef;
(b) E. A. Henderson, V. Bavetsias, D. S. Theti, S. C. Wilson, R. Clauss and A. L. Jackman, Bioorg. Med. Chem., 2006, 14, 5020 CrossRef CAS;
(c) A. Foster, H. A. Coffrey, M. J. Morin and F. Rastinejad, Science, 1999, 286, 2507 CrossRef CAS.
-
(a) T.-C. Chien, C.-S. Chen, F.-H. Yu and J.-W. Chern, Chem. Pharm. Bull., 2004, 52, 1422 CrossRef CAS;
(b) T. Herget, M. Freitag, M. Morbitzer, R. Kupfer, T. Stamminger and M. Marschall, Antimicrob. Agents Chemother., 2004, 48, 4154 CrossRef CAS.
-
(a) K. Waisser, J. Gregor, H. Dostal, J. Kunes, L. Kubicova, V. Klimesova and J. Kaustova, Farmaco, 2001, 56, 803 CrossRef CAS;
(b) J. Kunes, J. Bazant, M. Pour, K. Waisser, M. Slosarek and J. Janota, Farmaco, 2000, 55, 725 CrossRef CAS.
- R. Gundla, R. Kazemi, R. Sanam, R. Muttineni, J. A. R. P. Sarma, R. Dayam and N. Neamati, J. Med. Chem., 2008, 51, 3367 CrossRef CAS.
- Mendes da Silva, J. F. Walters, M. Al-Damluji, S. Ganellin and C. R. Bioorg, Bioorg. Med. Chem., 2008, 16, 7254 Search PubMed.
-
(a) G. W. Rewcastle, B. D. Palmer, A. J. Bridges, H. D. Hollis Showalter, L. Sun, J. Nelson, A. McMichael, A. J. Kraker, D. W. Fry and W. A. Denny, J. Med. Chem., 1996, 39, 918 CrossRef;
(b) A. Luth and W. Lowe, Eur. J. Med. Chem., 2008, 43, 1478 CrossRef.
- F. Beaulieu, C. Ouellet, E. H. Ruediger, M. Belema, Y. Qiu, X. Yang, J. Banville, J. R. Burke, K. R. Gregor, J. F. MacMaster, A. Martel, K. W. McIntyre, M. A. Pattoli, F. C. Zusi and D. Vyas, Bioorg. Med. Chem. Lett., 2007, 17, 1233 Search PubMed.
- B. Asproni, G. Murineddu, A. Pau, G. A. Pinna, M. Langgård, C. T. Christoffersen, J. Nielsen and J. Kehler, Bioorg. Med. Chem., 2011, 19, 642 Search PubMed.
- F. Varano, D. Catarzi, V. Colotta, O. Lenzi, G. Filacchioni, A. Galli and C. Costagli, Bioorg. Med. Chem., 2008, 16, 2617 Search PubMed.
- F. Varano, D. Catarzi, V. Colotta, F. R. Calabri, O. Lenzi, G. Filacchioni, A. Galli, C. Costagli, F. Deflorian and S. Moro, Bioorg. Med. Chem., 2005, 13, 5536 Search PubMed.
-
(a) For recent reviews on copper-catalyzed cross couplings, see: S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400 Search PubMed;
(b) K. Kunz, U. Scholz and D. Ganzer, Synlett, 2003, 2428 CrossRef CAS;
(c) I. P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev., 2004, 248, 2337 CrossRef CAS;
(d) D. Ma and Q. Cai, Acc. Chem. Res., 2008, 41, 1450 CrossRef CAS;
(e) G. Evano, N. Blanchard and M. Toumi, Chem. Rev., 2008, 108, 3054 CrossRef CAS;
(f) F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009, 48, 6954 CrossRef CAS;
(g) H. Rao and H. Fu, Synlett, 2011, 745 Search PubMed and references cited therein.
-
(a) For recent studies on the synthesis of N-heterocycles through Ullmann-type couplings, see: R. Martin, M. R. Rivero and S. L. Buchwald, Angew. Chem., Int. Ed., 2006, 45, 7079 Search PubMed;
(b) G. Evindar and R. A. Batey, J. Org. Chem., 2006, 71, 1802 CrossRef CAS;
(c) F. Bonnaterre, M. Bois-Choussy and J. Zhu, Org. Lett., 2006, 8, 4351 CrossRef CAS;
(d) B. Zou, Q. Yuan and D. Ma, Angew. Chem., Int. Ed., 2007, 46, 2598 CrossRef CAS;
(e) Y. Chen, X. Xie and D. Ma, J. Org. Chem., 2007, 72, 9329 CrossRef CAS;
(f) X. Yuan, X. Xu, X. Zhou, J. Yuan, L. Mai and Y. Li, J. Org. Chem., 2007, 72, 1510 CrossRef CAS;
(g) B. Wang, B. Lu, Y. Jiang, Y. Zhang and D. Ma, Org. Lett., 2008, 10, 2761 CrossRef CAS;
(h) G. Altenhoff and F. Glorius, Adv. Synth. Catal., 2004, 346, 1661 CrossRef CAS.
-
(a) For selected papers, see: Copper-catalyzed synthesis of N-heterocycles, see: X. Liu, H. Fu, Y. Jiang and Y. Zhao, Angew. Chem., Int. Ed., 2009, 48, 348 Search PubMed;
(b) C. Huang, Y. Fu, H. Fu, Y. Jiang and Y. Zhao, Chem. Commun., 2008, 6333 RSC;
(c) D. Yang, H. Fu, L. Hu, Y. Jiang and Y. Zhao, J. Org. Chem., 2008, 73, 7841 CrossRef CAS;
(d) D. Yang, H. Liu, H. Yang, H. Fu, L. Hu, Y. Jiang and Y. Zhao, Adv. Synth. Catal., 2009, 351, 1999 CrossRef CAS;
(e) F. Wang, H. Liu, H. Fu, Y. Jiang and Y. Zhao, Org. Lett., 2009, 11, 2469 CrossRef CAS;
(f) J. Lu, X. Gong, H. Yang and H. Fu, Chem. Commun., 2010, 46, 4172 RSC;
(g) H. Zhao, H. Fu and R. Qiao, J. Org. Chem., 2010, 75, 3311 CrossRef CAS;
(h) X. Yang, H. Fu, R. Qiao, Y. Jiang and Y. Zhao, Adv. Synth. Catal., 2010, 352, 1033 CrossRef CAS;
(i) X. Gong, H. Yang, H. Liu, Y. Jiang, Y. Zhao and H. Fu, Org. Lett., 2010, 12, 3128 CrossRef CAS;
(j) S. Xu, J. Lu and H. Fu, Chem. Commun., 2011, 47, 5596 RSC;
(k) D. Yang, Y. Wang, H. Yang, T. Liu and H. Fu, Adv. Synth. Catal., 2012, 354, 477 CrossRef CAS;
(l) T. Liu, R. Wang, H. Yang and H. Fu, Chem.–Eur. J., 2011, 17, 6765 CrossRef CAS;
(m) X. Yang, Y. Luo, Y. Jin, H. Liu, Y. Jiang and H. Fu, RSC Adv., 2012, 2, 8258 RSC.
- R. Bernini, S. Cacchi, G. Fabrizi and A. Sferrazzaa, Synthesis, 2009, 1209.
- C. Lin, T. H. Duh, W. D. Lu, J. L. Lee, C. Y. Lee, C. C. Chen and M. J. Wu, J. Chin. Chem. Soc., 2004, 51, 183 CAS.
- S. Ma, J. Liu, S. Li, B. Chen, J. Cheng, J. Kuang, Y. Liu, B. Wan, Y. Wang, J. Ye, Q. Yu, W. Yuan and S. Yu, Adv. Synth. Catal., 2011, 353, 1005 CrossRef CAS.
|
This journal is © The Royal Society of Chemistry 2012 |
Click here to see how this site uses Cookies. View our privacy policy here.